
UNICONN: A Uniform High-Level Communication
Library for Portable Multi-GPU Programming

Doğan Sağbili∗,Sinan Ekmekçibaşı∗, Khaled Z. Ibrahim†, Tan Nguyen†, Didem Unat∗
∗Department of Computer Science and Engineering

Koç University, Istanbul, Turkiye
{dsagbili17, sekmekcibasi23, dunat}@ku.edu.tr

†Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory, CA, USA

{kzibrahim, tannguyen}@lbl.gov

Abstract—Modern HPC and AI systems increasingly rely on
multi-GPU clusters, where communication libraries such as MPI,
NCCL/RCCL, and NVSHMEM enable data movement across
GPUs. While these libraries are widely used in frameworks and
solver packages, their distinct APIs, synchronization models, and
integration mechanisms introduce programming complexity and
limit portability. Performance also varies across workloads and
system architectures, making it difficult to achieve consistent
efficiency. These issues present a significant obstacle to writing
portable, high-performance code for large-scale GPU systems.

We present UNICONN, a unified, portable high-level C++
communication library that supports both point-to-point and
collective operations across GPU clusters. UNICONN enables
seamless switching between backends and APIs (host or device)
with minimal or no changes to application code. We describe its
design and core constructs, and evaluate its performance using
network benchmarks, a Jacobi solver, and a Conjugate Gradient
solver. Across three supercomputers, we compare UNICONN’s
overhead against CUDA/ROCm-aware MPI, NCCL/RCCL, and
NVSHMEM on up to 64 GPUs. In most cases, UNICONN incurs
negligible overhead, typically under 1% for the Jacobi solver and
under 2% for the Conjugate Gradient solver.

Index Terms—GPU, Multi-GPUs, MPI, NCCL/RCCL, NVSH-
MEM, communication libraries

I. INTRODUCTION

In modern HPC and AI supercomputers, GPUs have become
the dominant accelerators, and applications increasingly rely
on multi-GPU clusters to meet growing memory and perfor-
mance demands. To enable data movement across GPUs and
nodes, a variety of communication libraries are available [1],
ranging from GPU-aware MPI and vendor-specific collectives
like NCCL and RCCL, to one-sided communication runtimes
such as NVSHMEM. These libraries, each with distinct pro-
gramming models and runtime behaviors, are widely used
in application frameworks (e.g., PyTorch [2], AMReX [3],
PETSc [4]), linear algebra libraries and solvers (e.g., ScaLA-
PACK, MAGMA [5], SuperLU [6]), and programming models
(e.g., Kokkos [7], Galois [8], Charm++ [9]).

Despite the availability of various GPU communication li-
braries, users still face challenges in programming complexity
and portability across clusters. A key issue is the inconsistency
in API semantics and GPU runtime integration. For example,
while MPI and NCCL/RCCL use a synchronous, two-sided

communication model, NVSHMEM employs a one-sided,
asynchronous model, leading to differences in buffer address
handling and synchronization. Additionally, MPI lacks native
GPU stream support, requiring manual synchronization, while
NVSHMEM introduces further complexity with its device-side
APIs and specialized kernel launch functions. These disparities
extend to initialization methods, requiring developers to be
more than knowledgeable about each library. Moreover, the
performance of the communication library depends on factors
like message size, node architecture, and system setup. Thus,
no single library universally delivers optimal performance
across systems and workloads. As a result, adapting code to
different libraries often requires significant changes, empha-
sizing the need for unified and portable solutions.

To alleviate these concerns, efforts to unify multiple
communication libraries have emerged in specific AI and
HPC contexts. Aluminum targets deep learning workloads
by combining MPI and NCCL under a two-sided model,
enabling communication-computation overlap and custom
collectives [10]. MCR-DL dynamically selects the best-
performing backend for each message size during training
on NVIDIA GPUs [11]. Other efforts, such as PETSc [12],
mix MPI and NVSHMEM to leverage two-sided and one-
sided communication in parallel numerical solvers. However,
these solutions are either domain-specific, tied to particular
frameworks, or lack a general-purpose API that unifies host
and device communication across vendors with minimal code
changes.

This paper presents UNICONN, a high-level, portable, and
unified communication library that supports point-to-point
(P2P) and collective operations on both host and device APIs.
Designed to simplify multi-GPU programming, UNICONN
enables developers to switch between multiple communication
backends at compile time with minimal or no changes to appli-
cation code. It supports NVIDIA and AMD GPUs and offers a
modular design that facilitates integrating new communication
backends or vendor support.

UNICONN provides four key abstractions: Environment,
Communicator, Memory, and Coordinator, which to-
gether simplify backend initialization, resource management,
and kernel coordination. The Coordinator enables flex-



1 //Host-side API
2 jacobi_kernel<<<..., stream>>> (Anew, A, iy_start, iy_end, nx, A_buf);
3 cudaStreamSynchronize(stream);
4 MPI_Isend(Anew + offset1, nx, MPI_FLOAT, top, 0, MPI_COMM_WORLD, req);
5 MPI_Isend(Anew + offset2, nx, MPI_FLOAT, bottom, 0,

MPI_COMM_WORLD,req+1);
6 MPI_Irecv(Anew_buf + nx, nx, MPI_FLOAT, bottom, 0, MPI_COMM_WORLD,

req+2);
7 MPI_Irecv(Anew_buf, nx, MPI_FLOAT, top, 0, MPI_COMM_WORLD, req+3);
8 MPI_Waitall(4, req, stat);

Listing (1) GPU-aware MPI

1 //Host-side API
2 jacobi_kernel<<<..., stream>>> (Anew, A, iy_start, iy_end, nx, A_buf);
3 ncclGroupStart();
4 ncclSend(Anew + offset1, nx, ncclFloat, top, world_comm, stream);
5 ncclSend(Anew + offset2, nx, ncclFloat, bottom, world_comm, stream);
6 ncclRecv(Anew_buf + nx, nx, ncclFloat, bottom, world_comm, stream);
7 ncclRecv(Anew_buf, nx, ncclFloat, top, world_comm, stream);
8 ncclGroupEnd();

Listing (2) GPUCCL

1 //Device-side API
2 __global__ void jacobi_kernel(...) {
3 if (blockIdx.x == gridDim.x - 1) { //Top compute
4 nvshmemx_float_put_signal_nbi_block (Anew_buf+ nx,

A_buf + nx, nx, sync_arr+1, iter+1,
NVSHMEM_SIGNAL_SET, top);

5 if (threadIdx.x == 0)
6 nvshmem_signal_wait_until(sync_arr,

NVSHMEM_CMP_EQ, iter+1);
7 } else if (blockIdx.x == gridDim.x - 2) {//Bottom compute
8 nvshmemx_float_put_signal_nbi_block (Anew_buf, A_buf,

nx, sync_arr, iter+1, NVSHMEM_SIGNAL_SET,
bottom);

9 if (threadIdx.x == 0)
10 nvshmem_signal_wait_until(sync_arr+1,

NVSHMEM_CMP_EQ, iter+1);
11 } else { /*Inner domain compute*/}
12 }
13 //Host-side API
14 void *kernelArgs[] = {...};
15 nvshmemx_collective_launch((void *)jacobi_kernel,

grid_dim_x * grid_dim_y + 2, dim_block, kernelArgs,
0, stream);

Listing (3) GPUSHMEM Device

Fig. 1: Code examples of GPU-aware MPI, GPUCCL, and GPUSHMEM for a 2D Jacobi solver on NVIDIA GPUs. GPUCCL
uses group operations; GPUSHMEM uses device-side communication APIs.

ible GPU kernel launch strategies via a templated launch
mode parameter and supports both two-sided and one-sided
communication models. These capabilities help developers
write portable, backend-agnostic code while maintaining per-
formance across multi-GPU systems. In summary, our contri-
butions are as follows:

• We design UNICONN, a unified and portable high-level
C++ API that supports both point-to-point and collective
operations across host- and device-initiated APIs.

• We introduce a Coordinator construct that enables
compile-time switching across communication libraries,
one-sided and two-sided models, and host/device APIs
with minimal effort.

• We implement three communication backends: GPU-
aware MPI, GPUCCL (NCCL/RCCL), and GPUSH-
MEM. The first two conform to the host API specification
on AMD/NVIDIA GPUs, while the latter supports both
host and device APIs on NVIDIA GPUs.

• We evaluate UNICONN using standard network bench-
marks (latency and bandwidth), as well as Jacobi and
Conjugate Gradient (CG) solvers, and compare perfor-
mance against native implementations.

• UNICONN introduces negligible or acceptable overheads.
In network benchmarks, overheads range on average from
5% to 1% for small and large messages. In the Jacobi
solver on 64 GPUs, performance was within 1% differ-
ence of the native implementations. For CG, overheads
range on average under 2% with 2 nodes, 8 GPUs on
Perlmutter and Lumi.

II. BACKGROUND AND MOTIVATION

This section gives background on the commonly avail-
able communication libraries in HPC clusters and discusses
their programmability issues and our motivations to design
UNICONN.

A. Communication Libraries

1) GPU-aware MPI: MPI is widely used in HPC to build
applications that scale to thousands of nodes. GPU-aware
MPI can distinguish between host and device buffers, allowing
data transfers to bypass the host CPU. This capability enables
developers to use device buffers directly in MPI calls, allowing
the MPI implementation to leverage a direct GPU-to-GPU data
path established by GPUDirect RDMA [13] or ROCnRDMA
[14]. Without this optimization, device buffers must be copied
to or from host memory before being sent or received via MPI,
introducing additional host-device transfers to the data path.
Currently, most MPI implementations such as MVAPICH2,
OpenMPI, and HPE Cray MPICH support GPU awareness
either natively or through UCX [15]–[20].

2) GPUCCL: The GPU Collective Communication Library,
we call GPUCCL in short, is a collection of vendor-provided,
topology-aware collective primitives and, more recently, point-
to-point communication APIs for inter-device communication
[21]. NVIDIA, AMD, and Intel provide their respective li-
braries as NCCL, RCCL, and oneCCL [22]–[24]. GPUCCL
implements communication and computation for a collective
within a single kernel, reducing kernel launch overhead and
providing specialized solutions. Since GPUCCL natively sup-
ports each vendor’s GPU programming model, the APIs in-
clude a stream argument, allowing separate streams to overlap
communication and computation on a GPU when needed, and
the GPU itself manages the ordering of the operations.

3) GPUSHMEM: GPU-centric OpenSHMEM libraries,
that we call GPUSHMEM in short, are Partitioned Global
Address Space (PGAS) libraries from GPU vendors that
implement the OpenSHMEM specification for GPUs. These
libraries provide efficient one-sided put/get APIs for pro-
cesses to access remote data objects and support point-to-
point and collective communication between GPUs within

2



10 2 100 102 104

Message size (KB)

101

102

Ti
m

e/
Ite

ra
tio

n 
(

s)
a) Perlmutter Intra Latency

10 2 100 102 104

Message size (KB)

101

102

103
b) Perlmutter Inter Latency

10 2 100 102 104

Message size (KB)

10 1

100

101

102

103

104

Ba
nd

wi
dt

h 
(M

B/
s)

c) Perlmutter Inter Bandwidth

10 2 100 102 104

Message size (KB)

10 1

100

101

102

103

104

d) Lumi Inter Bandwidth

MPI GPUCCL GPUSHMEM_Device

Fig. 2: Communication performance results within and across nodes in Perlmutter and Lumi supercomputers. Both the x and
y axes are logarithmic. Blue and green lines represent solutions that use host-side APIs and magenta lines represent solutions
that use device-side APIs.

and across nodes. GPUSHMEM libraries extend the OpenSH-
MEM API specification by providing stream-aware host-side
and device-side APIs with additional execution granularity
information, such as warp and thread-block. The thread-block
and warp variants of the device-side APIs require all threads
in the corresponding hierarchy to communicate cooperatively.
NVIDIA for CUDA, AMD for HIP, and Intel for SYCL have
their implementations as NVSHMEM, rocSHMEM, and Intel
SHMEM, respectively [25]–[28].

B. Programmer’s Productivity and Portability

Despite the availability of multiple library options provided
by GPU vendors, users still face programming complexity and
portability challenges across supercomputing platforms. One
major issue is the variation in API semantics and GPU runtime
integration, as illustrated in Fig. 1, which shows an example
of a single iteration from a 2D Jacobi solver.

While all libraries use a buffer address and size pair, MPI
and GPUCCL follow a two-sided communication model with
send/receive operations that are synchronous between
processes. In contrast, GPUSHMEM uses a one-sided model
with put/get operations that are asynchronous with respect
to the other participating GPU. This difference is evident in
Listing 1 and Listing 2 versus Listing 3, where GPUSHMEM
specifies the receiver’s buffer address in the sender’s API.

As seen in Fig. 1, GPU-aware MPI does not officially inte-
grate a GPU stream concept into its API, whereas GPUCCL
and GPUSHMEM support it natively. Thus, MPI needs cud-
aStreamSynchronize to synchronize CPU and GPU progress.
Also, to reduce latency from kernel launch overheads to a GPU
stream, GPUCCL features grouping calls to aggregate individ-
ual communication operations into a single kernel launch.

GPUSHMEM differs from others by enabling device-side
APIs, adding another layer of complexity for developers.
In addition to the execution granularity of the device APIs,
which is described in Section II-A3, GPUSHMEM requires a
specialized kernel launch function that enables synchronization
and collective APIs on a GPU kernel. This is showcased

on Listing 3, where the GPU kernel launches with nvsh-
memx collective launch, which also limits the number of
thread blocks a kernel can launch due to a lack of preemptive
scheduling on GPUs.

Moreover, each of the libraries mentioned uses a different
method to initialize inter-process GPU communication (not
shown in the listings): some depend on a CPU communication
library, as GPUCCL does; others require tweaking environ-
ment variables; and some, like GPUSHMEM, require the use
of specialized functions.

These differences result in inconsistent APIs, communi-
cation ordering, and initialization schemes, requiring deep
familiarity with each library. Supporting multiple libraries
often forces developers to rewrite communication interfaces,
reducing productivity.

C. Performance

Communication libraries can exhibit significant perfor-
mance variation due to differences in the hardware and soft-
ware stacks of HPC systems. Hardware variation includes
GPU types, NICs, interconnects, and GPU layouts within and
across nodes. On the software side, differences in runtimes,
frameworks, and technologies like GPUDirect/ROCnRDMA
or GDRCopy [13], [14], [20], [29] also impact library perfor-
mance across clusters.

To illustrate the performance differences of the libraries,
we have conducted simple communication benchmarks derived
from the OSU communication benchmarks [30]. The results
are shown in Fig. 2. In these benchmarks, we measured the
latency and one-way bandwidth of CUDA-aware MPI, NCCL,
and device-side NVSHMEM with increasing message sizes on
both Perlmutter and Lumi supercomputers.

Fig. 2 a) and b) illustrate the performance of different
communication paths within and across two nodes in the same
supercomputer. These results reaffirm that no single library
optimally utilizes interconnects on intra-node and inter-node
communication. Comparing Fig. 2 c) and b), we observe that
libraries exhibit contrasting performance across two different

3



supercomputers, underscoring the importance of library inte-
gration with the system architecture. Fig. 2 shows performance
differences across libraries for different message sizes, empha-
sizing the need to switch between backend libraries for the
application to observe the best performance.

Overall, the results demonstrate that the optimal communi-
cation library for an application depends on multiple factors:
message size, whether the communication occurs within or
across nodes, and what interconnect and/or network are being
used to communicate between GPUs within and/or across
nodes respectively. As a result, applications should be capable
of leveraging different communication libraries to achieve
performance portability.

III. DESIGN GOALS

This section presents an overview of the goals and require-
ments for the UNICONN library.
• Uniform Communication Interface: A common interface

should support the semantics of the widely used communi-
cation models such as MPI and OpenSHMEM.

• Performance: The library should meet application perfor-
mance needs similar to native implementation by introduc-
ing negligible overhead.

• Portability across GPU runtimes: Since NVIDIA and
AMD GPUs are prevalent in the current supercomputers,
the library should support their runtimes.

• Device-side API support: The library should allow users
to invoke device-side functions and host-side counterparts.
In addition, the library should provide mechanisms to coop-
erate with kernels that have device-side functions with the
existing compute kernels in the application.

• Effortless transition: The library should allow seamless
switching between host- and device-side supports with min-
imal to zero code changes. This feature lets developers
incrementally introduce device-side API into their multi-
GPU applications while preserving existing host-side API
implementations.

• Asynchronous progress: The library should enable asyn-
chronous progression by allowing underlying libraries to
advance multiple independent communication primitives
alongside computation.

IV. UNICONN LIBRARY

To address the programmability and performance variation
issues outlined in Section II and achieve the goals in Sec-
tion III, we introduce UNICONN, a unified, portable C++
template communication library for multi-GPU platforms.
This section provides a high-level overview of UNICONN,
illustrating its abstractions and operations with example code,
the UNICONN implementation of the Jacobi solver shown in
Listing 4.

An application using UNICONN generally follows three
main execution phases: Setup, Progression, and Termination.
In Setup, required resources are created—this includes initial-
izing the library, setting up communication and GPU kernel

1 int main(int argc, char *argv[]) {
2 // Environment initialization
3 Environment<Backend> env(argc, argv);
4 int rank = env.WorldRank();
5 int size = env.WorldSize();
6 int local_rank = env.NodeRank();
7 env.SetDevice(local_rank);
8 // Communication initialization
9 Communicator<Backend> comm;

10 auto *comm_d = comm.toDevice();
11 int npes = comm.GlobalSize();
12 int mype = comm.GlobalRank();
13 // Memory management
14 A_buf = Memory<Backend>::Alloc<float>(2 * nx);
15 Anew_buf = Memory<Backend>::Alloc<float>(2 * nx);
16 sync_arr = Memory<Backend>::Alloc<uint64_t>(4);
17 cudaMalloc(&A, nx * chunk_size_high * sizeof(float));
18 cudaMalloc(&A_new, nx * chunk_size_high * sizeof(float));
19 // Coordinator construction
20 Coordinator<Backend, LaunchMode:X> jacobi_step(stream);
21 void *argsHost[] = {...};
22 void *argsPdev[] = {...};
23 void *argsFDev[] = {...};
24 // Kernel binding with launch modes
25 jacobi_step.BindKernel<LaunchMode::PureHost> (jacobi_kernel,

dim_grid_host, dim_block_host, 0, argsHost);
26 jacobi_step.BindKernel<LaunchMode::PartialDevice>

(jacobi_p_dev, dim_grid_p_dev, dim_block_p_dev, 0,
argsPdev);

27 jacobi_step.BindKernel<LaunchMode::PureDevice> (jacobi_f_dev,
dim_grid_dev, dim_block_dev, 0, argsDev);

28 comm.Barrier(stream);
29 // Jacobi time loop
30 for (iter = 0; iter < iter_max; ++iter) {
31 jacobi_step.LaunchKernel();
32 jacobi_step.CommStart();
33 jacobi_step.Post(A_buf , Anew_buf, nx, sync_arr + 1, iter

+ 1, top, &comm);
34 jacobi_step.Post(A_buf + nx, Anew_buf + nx, nx, sync_arr,

iter + 1, bottom, &comm);
35 jacobi_step.Acknowledge(Anew_buf + nx, nx, sync_arr, iter

+ 1, top, &comm);
36 jacobi_step.Acknowledge(Anew_buf, nx, sync_arr + 1, iter +

1, bottom, &comm);
37 jacobi_step.CommEnd();
38 std::swap(a_new, a);
39 std::swap(a_new_comm, A_buf);
40 }
41 comm.Barrier(stream);
42 cudaStreamSynchronize(stream);
43 // Memory free
44 cudaFree(A);
45 cudaFree(Anew);
46 Memory<Backend>::Free(A_buf);
47 Memory<Backend>::Free(Anew_buf);
48 Memory<Backend>::Free(sync_arr);
49 }

Listing 4: UNICONN host API code example for a 2D Jacobi
solver on NVIDIA GPUs.

constructs, and allocating memory. In Progression, these re-
sources are used to launch GPU kernels and perform commu-
nication operations. Finally, in Termination, allocated memory
is released and communication resources are destroyed.

A. Library Selection

There are distinct types available in the API that represent
each backend library supported in UNICONN. All interfaces
in UNICONN are designed to be used with a type template
argument to specify an underlying backend library to use in
the application. This allows the UNICONN library to support
multiple libraries under a single API and allow developers to
switch, add, or extend to backend libraries without disrupting
an application’s existing design.

Currently, UNICONN supports three libraries:
GPU-aware MPI, NCCL/RCCL, and NVSHMEM,
which are denoted as types of MPIBackend,

4



1 __global__ void jacobi_dev(...) {
2 if (blockIdx.x == gridDim.x - 1) {
3 Compute_Row(...); // Compute top row
4 Coordinator<Backend>::Post<ThreadGroup::BLOCK> (A_buf,

Anew_buf, nx, sync_arr + 1, iter + 1, top, comm);
5 Coordinator<Backend>::Acknowledge<ThreadGroup::BLOCK>

(Anew_buf + nx, nx, sync_arr, iter + 1, top, comm);
6 } else if (blockIdx.x == gridDim.x - 2) {
7 Compute_Row(...); // Compute bottom row
8 Coordinator<Backend>::Post<ThreadGroup::BLOCK> (A_buf + nx,

Anew_buf + nx, nx, sync_arr, iter + 1, bottom, comm);
9 Coordinator<Backend>::Acknowledge<ThreadGroup::BLOCK>

(Anew_buf, nx, sync_arr + 1, iter + 1, bottom, comm);
10 } else {
11 Compute_Domain(...); // Inner domain compute
12 }
13 }

Listing 5: UNICONN device API example using the
PureDevice launch mode

GpucclBackend, and GpushmemBackend. rocSHMEM
as a GpushmemBackend for AMD GPUs was not mature
during the development, and we leave it as future work.
An example of how to select a backend library can be seen
in Listing 4, where the Backend is given as a template
argument to the constructs of UNICONN and can be any type
that is listed earlier.

B. Environment

Communication libraries often have different initialization
schemes. For instance, GPU-aware MPI uses its initialization
function (e.g., MPI_Init) along with GPU runtime device se-
lection functions for setup and teardown. In contrast, libraries
like GPUCCL and GPUSHMEM typically depend on another
communication library, such as MPI, for their initialization
and termination routines, making development error-prone and
cumbersome.

To address this, UNICONN introduces the Environment
abstraction, which handles the initialization and termination of
the underlying communication library and sets the GPU device
for execution. To set the correct GPU through SetDevice,
Environment provides global and node-local process size
and rank APIs. Before invoking any UNICONN operations, an
application must create at least one Environment instance
and specify a valid GPU. An example is shown in lines 3-7
in Listing 4.

C. Communicator

The Communicator encapsulates processes and resources
for collective or point-to-point operations, analogous to an
MPI Communicator or OpenSHMEM Team. UNICONN pro-
vides operations to create and destroy communicator instances,
get both process size and rank within a communicator, and
split an existing communicator into sub-communicators. To
support device-side communication, the communicator in-
cludes a toDevice() function, which returns a valid GPU
address for use within GPU kernels. An example of how
to create and get the global size of the communicator and
the global rank of the process within the communicator can
be seen in lines 9 and 13 in Listing 4. Additionally, the
communicator supports barrier operations on both the host and

1 __global__ void jacobi_p_dev(...) {
2 Compute_Block(...); // Compute block
3 int block_iy = blockIdx.y * blockDim.y + offset1;
4 int block_ix = blockIdx.x * blockDim.x + 1;
5 if ((nx - 1) > block_ix){
6 if ((block_iy <= offset1) && (offset1 < block_iy +

blockDim.y)) {
7 Coordinator<Backend>::Post<ThreadGroup::BLOCK> (A_buf +

block_ix, Anew_buf + block_ix, min(blockDim.x, nx - 1
- block_ix), nullptr, 0, top, comm);

8 }
9 if ((offset2 < block_iy + blockDim.y) && (block_iy <=

offset2)) {
10 Coordinator<Backend>::Post<ThreadGroup::BLOCK> (A_buf + nx +

block_ix, Anew_buf + nx + block_ix, min(blockDim.x, nx
- 1 - block_ix), nullptr, 0, bottom, comm);

11 }}}

Listing 6: UNICONN device API example using the
PartialDevice launch mode

device sides, enabling synchronization across all GPUs within
a communicator instance.

D. Memory Management

The UNICONN library requires all processes in an Environ-
ment to allocate and relinquish memory through the Memory
construct for use in communication operations via Alloc()
and Free() functions which is shown in between lines
14 and 16 and 46 and 48, respectively in Listing 4. This
decision has been made since GPUSHMEM libraries enforce
all processes to use a symmetric heap for communication.
For GPU-aware MPI and GPUCCL, buffers allocated through
the Memory construct may improve performance due to data
locality by having a separate memory region for data transfer.

E. Coordinator

The Coordinator is the most critical abstraction in
UNICONN for managing coordination between GPU computa-
tion and communication. This section will discuss the multiple
aspects of Coordinator that allow easy transition between
underlying communication libraries and host-side and device-
side APIs. The constructor and destructor of Coordinator
take a GPU stream as an argument.

1) Launch Mode: A Launch Mode template parameter
controls a Coordinator instance’s behavior. Launch Mode
decides which GPU kernel to use to launch and which host or
device APIs to enable for communication for the application.
We currently support three types of Launch Modes: PureHost,
PureDevice, and PartialDevice.

• PureHost: In this mode, the Coordinator instance
uses only host-side APIs and launches GPU kernels
exclusively for computation.

• PureDevice: This mode is the alternative to PureHost.
The Coordinator instance relies solely on device-side
APIs, and a GPU kernel that manages computation and
communication is launched. This mode is available only
when using the GPUSHMEM libraries. An example GPU
kernel is shown in Listing 5.

• PartialDevice: This mode provides a middle ground
between PureHost and PureDevice for p2p communica-
tions. The UNICONN library allows the developer to send

5



multiple messages from within a GPU kernel without
immediate synchronization with the receiver; synchro-
nization occurs later through host-side APIs. This enables
developers to partition messages into smaller chunks
aligned with the GPU kernel’s computation pattern and
send them asynchronously. An example GPU kernel is
shown in Listing 6, and in Host API lines 33 until 36 in
Listing 4 are handling the synchronization between neigh-
boring GPUs. For collective operations, the behavior is
identical to that of the PureHost mode. Like PureDevice,
this mode is available only with GPUSHMEM libraries.

2) GPU Kernel Management: In Section III, we described
our motivation for enabling the UNICONN library to switch
between host-side and device-side APIs without requiring any
code changes. Achieving this flexibility requires a mecha-
nism for switching between different GPU kernels, either
for computation alone or for computation combined with
communication, within an application.

Incorporating device-side function calls into a kernel can
increase register usage per thread, thereby reducing GPU oc-
cupancy compared to a computation-only kernel [31]. Further-
more, developing a new kernel with embedded communication
primitives requires additional effort. This work primarily in-
volves managing thread hierarchies and balancing computation
and communication workloads within the GPU kernel. Thus,
we designed the Coordinator construct to support launch-
ing different GPU kernels, controlled via the LaunchMode
template parameter, to address these challenges. With this
capability, the library can launch kernels using the appropriate
GPU kernel launch functions and parameters the underly-
ing backend library requires, through the BindKernel and
LaunchKernel constructs. This design enables developers
to incrementally extend their codebases to incorporate device-
side APIs without disrupting existing workflows, while allow-
ing each GPU kernel to be independently optimized.

The BindKernel construct is used to bind GPU kernels
and the required parameters to a Coordinator instance.
This binding is performed by comparing the LaunchMode
template argument to both the function and the class, then stor-
ing the appropriate arguments. An example of BindKernel
is shown at lines 20-27 in Listing 4, where a Coordinator
instance is initialized with LaunchMode::X. Here, X can be
any valid value of LaunchMode, and only the corresponding
BindKernel invocation stores the parameters based on the
X value. The LaunchKernel construct is used to initiate
the GPU kernel launch. This construct does not take any
parameters, as all the necessary data for the GPU kernel
launch is already stored within the Coordinator instance,
as illustrated at line 31 in Listing 4.

F. Communication Operations

The UNICONN library supports point-to-point and collective
communication operations over a UNICONN Communicator,
through both host and device-side APIs. These primitives
are implemented within the Coordinator construct and
are managed through the LaunchMode template parameter

1 class Coordinator<Backend,LaunchMode::X> {
2 void Post<T>(T* sendbuf, T* recvbuf, size_t size, uint64_t*

sig_loc, uint64_t sig_val, int dest_id,
Communicator<Backend>* comm);

3 void Acknowledge<T>(T* recvbuf, size_t size, uint64_t* sig_loc,
uint64_t sig_val, int src_id, Communicator<Backend>* comm);

4 void AllGather<T>(T* sendbuf, T* recvbuf, size_t count,
Communicator<Backend>* comm); // +In-Place +Vectorized

5 void AllReduce<ReductionOperator::OP,T>(T* sendbuf, T* recvbuf,
size_t count, Communicator<Backend>* comm); // +In-Place

6 void Reduce<ReductionOperator::OP,T>(T* sendbuf, T* recvbuf,
size_t count, int root, Communicator<Backend>* comm); //
+In-Place

7 void AlltoAll(T* sendbuf, T* recvbuf, size_t count,
Communicator<Backend>* comm); //+Vectorized

8 void Broadcast<T>(T* buf, size_t count, int root,
Communicator<Backend>* comm);

9 void Gather(T* sendbuf, T* recvbuf, size_t count, int root,
Communicator<Backend>* comm); //+In-Place +Vectorized

10 void Scatter(T* sendbuf, T* recvbuf, size_t count, int root,
Communicator<Backend>* comm); /*+In-Place +Vectorized*/ }

Listing 7: Main UNICONN host communicaton interface

described in Section IV-E1. All host-side communication
APIs provided by UNICONN are shown in Listing 7. In this
section, we discuss the design choices made for the UNICONN
communication APIs to conform to two-sided and one-sided
communication models of existing libraries, while maintaining
a uniform interface across host and device APIs.

1) Data Types: To ensure type safety for host and device
APIs, UNICONN uses a type template parameter to determine
the most suitable argument type based on the given data type
for the communication functions.

2) P2P Primitives: The Post and Acknowledge oper-
ations are analogous to MPI’s send and recv operations.
However, these operations require additional arguments to
support two-sided and one-sided communication models. In
one-sided communication, the sender has direct access to the
receiver’s buffer address, and the receiver is notified via a
signaling operation, which is an atomic update to a counter.

Consequently, the Post operation (Listing 7, Line 2) re-
quires a send buffer, a receive buffer, and a signal buffer to sup-
port both semantics and leverage the asynchronous behavior of
one-sided P2P communication. Similarly, the Acknowledge
operation (Listing 7, Line 3) requires a receive buffer and a
signal buffer to allow the receiver to be notified by the sender.

Importantly, the communication semantics of Post and
Acknowledge preserve those of the underlying backend:
with MPI or GPUCCL, communication completion is synchro-
nized; with GPUSHMEM, communication completion remains
asynchronous between GPUs.

3) Collectives: The collective operations in both the host
and device APIs are similar to those provided by MPI
and GPUSHMEM, which are shown in Listing 7. Addi-
tionally, UNICONN includes vectorized and in-place variants
of some collective operations, indicated by +Vectorized
and +In-Place comments. For reduction operations such
as AllReduce and Reduce, a template parameter called
ReductionOperator specifies the reduction operator to
apply.

4) Device-side Thread Granularity Selection: To expose
and efficiently utilize different levels of GPU execution granu-

6



larity, device-side APIs include an additional template param-
eter named ThreadGroup, which specifies the thread hier-
archy to use for a primitive. The UNICONN library currently
supports THREAD, WARP, and BLOCK granularities.

G. Operation Grouping
UNICONN includes two Host APIs on the Coordinator,

namely CommStart and CommEnd, to allow for indepen-
dent and non-blocking execution of communication opera-
tions listed between these functions. CommStart prepares
the Coordinator instance for non-blocking execution and
allows for registration of communication primitives. CommEnd
ensures the completion of the registered communication oper-
ations before executing the next GPU operation on the GPU
stream of the Coordinator instance.

H. Revisiting Jacobi Example
To provide a top-down view of the UNICONN constructs,

we revisit the Jacobi example with the help of Listing 4.
The program begins with the Setup phase by initializing the
Environment object, which sets the rank, communication
world, and local rank. It then creates a Communicator
followed by memory allocation for solver buffers.

Afterwards, a Coordinator is instantiated with a GPU
stream to manage kernel launches and communication bind-
ings, configured with a chosen LaunchMode that we denote
with X. All constructs are templated with a Backend, allow-
ing the application to target different communication libraries.
Depending on the selected launch mode, BindKernel is
invoked to specify the kernel function. Although the example
shows three possible bindings, only one is active at runtime
based on the chosen LaunchMode::X. Automating the
switching of these backends is a subject of future work.

Later, the Jacobi time loop follows, where each iteration
launches the computation with LaunchKernel, prepares the
Coordinator for non-blocking communication operations
with CommStart, and registers the communication requests
with calls such as Post and Acknowledge to synchronize
halo exchanges. At the end of an iteration, CommEnd is called
to ensure completion of communication operations on the GPU
stream before moving on with the next iteration.

Finally, after Barrier, the program explicitly deallocates
memory and uses the RAII technique, which ensures all
previously allocated constructs are destroyed automatically at
the end of their lifetime. This includes the Environment
instance, which invokes the backend library’s termination.

V. IMPLEMENTATION

The UNICONN library is implemented as a C++ template li-
brary, using templates to create an interface for every construct
and function within the UNICONN API. This approach enabled
us to implement constructs for each underlying communication
library as template specializations of the respective construct
template. Additionally, for each template parameter discussed
in Sections IV-E1, IV-F3, IV-F4, and the data types in Sec-
tion IV-F1, we utilize template specializations and instantia-
tions for the corresponding template functions. This design

allows us to separate implementations while maintaining a
unified function signature and enables extending the UNICONN
library to future programming models and communication
libraries.

The UNICONN library interacts with GPU runtimes using
vendor-agnostic function macros for portability across super-
computers and GPU vendors. These macros are expanded
into specific GPU runtime functions based on the compile-
time definitions for the target GPU runtime. Additionally,
UNICONN provides default arguments to select the underlying
communication library and LaunchMode for an application.
These selections can be controlled through compile-time def-
initions that match the supported libraries and LaunchModes.

A. Semantic Coverage

Most communication operations in UNICONN can be di-
rectly mapped to corresponding backend functions. When a
backend lacks a one-to-one match, UNICONN composes the
operation using equivalent P2P primitives. For MPI, UNICONN
supports both blocking and non-blocking P2P and collec-
tives for native datatypes, mapping Post to MPI_Send or
MPI_Isend depending on whether the operation belongs to
a group. We are aware of GPU-aware MPI having mature
one-sided API for P2P operations, and we will investigate this
support as future work.

With NCCL/RCCL, UNICONN maps host-side APIs directly
when possible, and constructs grouped P2P operations for
unsupported collectives. For NVSHMEM, available host and
device-side collectives are mapped directly to respective oper-
ations when possible; otherwise, UNICONN emulates them by
using Put/Get operations with barriers to ensure ordering and
completion.

Crucially, UNICONN preserves the completion semantics
of each backend. For example, Post and Acknowledge
follow synchronized communication completion for MPI and
GPUCCL, aligning with their two-sided models. In contrast,
NVSHMEM maintains asynchronous communication between
GPUs using one-sided PutWithSignal and WaitSignal.

VI. EXPERIMENTS

To evaluate the portability and performance of UNICONN,
we implemented and conducted three experiments across three
supercomputers featuring both NVIDIA and AMD GPUs.
These experiments include a network microbenchmark, a 2D
Jacobi solver, and a Conjugate Gradient (CG) solver. Each
experiment was executed using both the native API of the
communication library, referred to as libname: Native, and
the UNICONN API with the corresponding backend, denoted
as libname: UNICONN (e.g., MPI-Native and MPI-Uniconn).

A. Experiment Setup

1) Supercomputers: Experiments were executed on three
supercomputers: Perlmutter, Lumi, and MareNostrum5, whose
hardware and software specifications are summarized in Ta-
ble I. All reported network bandwidth values in the table are
for unidirectional single GPU to GPU communication.

7



Supercomputer CPU GPU Node
Interconnect

Network
Interconnect

GPU
Runtime

MPI GPU
CCL

GPU
SHMEM

Perlmutter
GPU

1× AMD
EPYC 7763

4× NVIDIA A100
(40 GB)

4× NVLink 3.0
(100 GB/s)

4× 200 Gb/s HPE
Cray Slingshot 11

CUDA 12.4 Cray MPICH
8.1.30

NCCL
2.24.3

NVSHMEM
3.2.5

LUMI-G 1× AMD
EPYC 7A53

4× AMD MI250X
(128 GB)

1–4× Infinity Fab-
ric (50 GB/s/link)

4× 200 Gb/s HPE
Cray Slingshot 11

ROCm
6.0.3

Cray MPICH
8.1.29

RCCL
2.18.3

N/A

MareNostrum5
ACC

2× Intel Xeon
8460Y+

4× NVIDIA H100
(64 GB)

4× NVLink 4.0
(150 GB/s)

4× 200 Gb/s NDR
InfiniBand

CUDA 12.6 OpenMPI 4.1 NCCL
2.18.5

NVSHMEM
3.1.7

TABLE I: Hardware and software characteristics of the supercomputers used in the experiments.

10 3 10 2 10 1 100 101 102 103 104

101

102

Ti
m

e/
Ite

ra
tio

n 
(

s)

Perlmutter

10 3 10 2 10 1 100 101 102 103 104

101

102

Lumi

10 3 10 2 10 1 100 101 102 103 104

101

102

Marenostrum 5

10 3 10 2 10 1 100 101 102 103 104

Message size (KB)

10 1

100

101

102

103

104

105

Ba
nd

wi
dt

h 
(M

B/
s)

10 3 10 2 10 1 100 101 102 103 104

Message size (KB)

100

101

102

103

104

105

10 3 10 2 10 1 100 101 102 103 104

Message size (KB)

100

101

102

103

104

105

10 2 100 102 104

Message size (KB)

0

10

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

2

0

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

5

0

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

0

1
Di

ff 
in

 %

10 2 100 102 104

Message size (KB)

0

10

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

0

2

Di
ff 

in
 %

MPI: Native
MPI: Uniconn

GPUCCL: Native
GPUCCL: Uniconn

GPUSHMEM_Device: Native
GPUSHMEM_Device: Uniconn

Fig. 3: Latency and bandwidth intra-node results

2) Measurements: We measure completion time using CU-
DA/HIP event-based timing, where start and end events are
recorded on the main stream of the application. The host
synchronizes with the device using the end event to deter-
mine execution time. Before timing begins, each experiment
performs warm-up iterations, followed by a host and device
synchronization. Each measurement is repeated ten times to
reduce the impact of outliers and network variability. After
omitting the lowest and the highest measurements, the average
execution time is reported.

B. Network Benchmarks

To stress-test the limits of our API, we implemented both la-
tency and bandwidth benchmarks, which are adapted from the
OSU communication benchmarks [30], using the UNICONN
Host and Device APIs. We then compared the performance of
these UNICONN implementations against their native counter-
parts. For the latency benchmark, we ran 100K iterations with
10K warm-up iterations for message sizes below 8 KiB, and
10K iterations with 1K warm-up iterations for larger sizes. The
bandwidth benchmark used 64 concurrent messages over 1000

iterations (100 warm-up) for messages smaller than 8KiB, and
200 iterations (20 warm-up) for larger messages.

The intra-node and inter-node benchmark results are pre-
sented in Fig. 3 and Fig. 4, respectively. All benchmarks
were conducted using two GPUs connected through a node
or network interconnect. Native implementations are shown
with dashed lines, while UNICONN variants are depicted using
solid lines. Each figure includes an embedded plot highlighting
the performance difference between the native and UNICONN
implementations as a percentage.

In intra-node and inter-node benchmark results, UNICONN
host API performance differs by at most 7% for intra-node and
at most 3% for inter-node cases, on average. This variation
can be attributed to network interference, and interactions
between the CPU and GPU streams, particularly with MPI,
which produced irregular results across message sizes. When
we investigated the variation and the overhead of Uniconn
over MPI, the main reason is the decision logic for calling
either blocking or non-blocking MPI operations to support
operation grouping in communication API. Additionally, each
blocking MPI call queries the GPU stream for pending op-

8



10 3 10 2 10 1 100 101 102 103 104

101

102

103

Ti
m

e/
Ite

ra
tio

n 
(

s)

Perlmutter

10 3 10 2 10 1 100 101 102 103 104

101

102

103

Lumi

10 3 10 2 10 1 100 101 102 103 104

101

102

103
Marenostrum 5

10 3 10 2 10 1 100 101 102 103 104

Message size (KB)

10 1

100

101

102

103

104

Ba
nd

wi
dt

h 
(M

B/
s)

10 3 10 2 10 1 100 101 102 103 104

Message size (KB)

10 1

100

101

102

103

104

10 3 10 2 10 1 100 101 102 103 104

Message size (KB)

10 1

100

101

102

103

104

10 2 100 102 104

Message size (KB)

0

5

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

0.0

2.5

5.0

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

10

5

0

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

2.5

0.0

2.5

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

2.5

0.0

2.5

Di
ff 

in
 %

10 2 100 102 104

Message size (KB)

2

0

2

Di
ff 

in
 %

MPI: Native
MPI: Uniconn

GPUCCL: Native
GPUCCL: Uniconn

GPUSHMEM_Device: Native
GPUSHMEM_Device: Uniconn

Fig. 4: Latency and bandwidth inter-node results

erations, introducing extra overhead. Due to MPI’s multiple
P2P modes, these stream queries interfere with communication
progress, especially for small messages in the Acknowledge
API, leading to variability in overhead across message sizes.
For GPUCCL, the performance are within 1% with respect
to native implementation for both intra-node and inter-node
on average. These findings suggest that the Host API is
efficient enough for developers to consider replacing the native
communication library API.

In addition, UNICONN’s device API performs similarly
with respect to the native device APIs of GPUSHMEM, as
shown in both Fig.3 and Fig.4. This trend is due to how
the implementation of UNICONN’s Device APIs are inlined
inside the library header files and compiled together with the
application code, eliminating per-warp function call overhead
within GPU kernels and allowing better optimization from the
compiler. This performance is evident in intra-node latency
and bandwidth benchmarks, where the overhead is at most
0.08% on average for both.

While our engineering efforts aim to reduce overhead to-
ward 0%, we argue that developers can still benefit if the
overhead is significantly smaller than the performance gap
between backend libraries. Our programming model enables
the selection of the best-performing backend with minimal
migration efforts. Automating migration from legacy models
remains a topic for future work.

C. Jacobi 2D Solver

The iterative Jacobi solver is a stencil computation that
updates each grid element based on the values of its imme-

diate neighbors within a fixed-size window. Such operations
are common in scientific simulations and image processing.
Thanks to their regular communication pattern and predictable
volume, stencil codes serve as a strong use case for evaluating
the UNICONN P2P performance. In our evaluation, we use a
5-point 2D star stencil on a grid of size 214×214 with single-
precision floats. The grid is partitioned equally across GPUs
along the y-axis, so each GPU handles a 214×214/N domain,
where N is the number of GPUs. We run 100K iterations, with
10K as warm-up.

Fig. 5 compares UNICONN’s performance against native
libraries on up to 64 GPUs. This corresponds to 16 nodes
on Perlmutter and MareNostrum5, and eight nodes on LUMI,
where the HIP/ROCm stack treats each MI250X Graphics
Compute Die (GCD) as a separate GPU.

The results in Fig. 5 show that UNICONN performs compa-
rably to the native implementations, with less than 1% average
difference across all GPU counts. However, the results from
all backends, become less stable as the GPU count increases.
This variation may stem from cascading delays between GPUs,
which can occur in both native and UNICONN implementa-
tions. Such delays may arise when one process affects another
process’s progress, slowing the overall application due to the
halo exchange communication pattern.

D. Conjugate gradient

Conjugate Gradient (CG) is used to solve large linear
systems of the form Ax = b, where A is sparse, symmetric,
and positive definite. In this experiment, each GPU holds a
partition of matrix A and the corresponding portion of the

9



1 2 4 8 16 32 64
Number of GPUs

101

102

Perlmutter

1 2 4 8 16 32 64
Number of GPUs

101

102

Lumi

1 2 4 8 16 32 64
Number of GPUs

101

102

Marenostrum 5

1 2 4 8 16 32 64
Number of GPUs

2

0

Di
ff 

in
 %

1 2 4 8 16 32 64
Number of GPUs

1

0

1

Di
ff 

in
 %

1 2 4 8 16 32 64
Number of GPUs

1

0

Di
ff 

in
 %

Ti
m

e 
(s

)

MPI: Native
MPI: Uniconn

GPUCCL: Native
GPUCCL: Uniconn

GPUSHMEM_Host: Native
GPUSHMEM_Host: Uniconn

GPUSHMEM_Device: Native
GPUSHMEM_Device: Uniconn

Fig. 5: Jacobi 2D results, Lower is better.

Serena
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Perlmutter

Queen_41470

10

20

30

40

50

Serena
0

10

20

30

40

50

LUMI

Queen_41470

20

40

60

80

100

120

140

Ti
m

e 
(s

)

MPI: Native
MPI: Uniconn

GPUCCL: Native
GPUCCL: Uniconn

GPUSHMEM_Host: Native
GPUSHMEM_Host: Uniconn

GPUSHMEM_Device: Native
GPUSHMEM_Device: Uniconn

Fig. 6: CG results on 8 GPUs, Lower is better

input vector x. Each CG iteration involves a sparse matrix-
vector multiplication (SpMV), which requires exchanging the
relevant parts of x across GPUs to account for nonzero
columns in their local matrix partitions. And two dot products
require an AllReduce operation across all GPUs. We wanted to
observe how UNICONN collective APIs are performing relative
to their Native counterparts in a widely used linear solver.

We distribute the rows of A equally in length across
GPUs, without accounting for the number of nonzeros in the
input matrix. Inter-GPU communication during SpMV uses
the AllGatherv collective primitive in both the Native and
UNICONN APIs. Our experiments use two matrices from the
SuiteSparse Matrix Collection: Serena and Queen 4147, with
1,391,349 and 4,147,110 rows, respectively [32]. We ran 10K
iterations (no warm-up) on 8 GPUs using two nodes each on
Perlmutter and LUMI.

As shown in Fig. 6, CG results are promising in which
the UNICONN implementations are performing on par with
the Native implementation such that the average difference
between Native and UNICONN is less than 1% with a slight
slowdown in Device API on the Serena matrix which is
around 3%. This solidifies that UNICONN Host and Device
APIs are suitable for collective operations. However, when
we examine MPI results, the runtime is significantly higher

than in other versions. A collective implementation may have
caused this result. To check if a collective operation is creating
a bottleneck, we tested all MPI and GPUCCL versions with
Allgatherv disabled and MPI native and UNICONN versions’
runtime were similar to the GPUCCL runtime.

E. Programmability

We include a table comparing SLOC across backends which
is listed in Table II. While Uniconn’s SLOC is slightly higher
with respect to native implementations, this overhead reflects
the inclusion of both host and device APIs in the same code-
base via the Coordinator API. We also argue qualitatively that
developing against a single communication library improves
productivity and reduces maintenance burden, especially when
compared to managing multiple code variants for different
backends.

Library Latency Bandwidth Jacobi2D CG

MPI 112 122 162 773
GPUCCL 122 131 184 775
GPUSHMEM Host N/A N/A 173 818
GPUSHMEM Device 139 154 233 810
Uniconn 125 148 246 842

TABLE II: Source line of code (SLOC) for each experiment

10



VII. RELATED WORK

Combining multiple communication libraries under a uni-
fied interface is being explored for specific AI or HPC
workloads. Aluminum is a communication library for AI
workloads that unifies MPI and NCCL under a two-sided
interface [10]. It supports communication-computation overlap
via non-blocking operations with explicit wait operation, a
dedicated progression engine and includes optimized collective
algorithms to reduce latency. Our work differs between Alu-
minum by using a grouping model (similar to NCCL/RCCL) to
support asynchronous operations, and it additionally supports
Device APIs and GPU kernel management; enabling device-
side communication and extensibility for custom backends and
algorithms.

MCR-DL is a communication framework for distributed
deep learning on NVIDIA GPUs that enables simultane-
ous use of multiple libraries [11]. It offers a thin Python
wrapper over multiple communication libraries for PyTorch,
requiring explicit backend selection and torch.Tensor
buffers within their API. Each communication backend is
implemented separately in C++, and the framework includes
a tuning suite to select the optimal backend per message size.
In contrast, UNICONN provides a backend-agnostic, templated
C++ host and device API applicable to a broader range of GPU
applications on both NVIDIA and AMD.

Automatic backend selection is an important but orthogonal
concern to UNICONN, and depends on multiple factors which
are briefly discussed in section II-C. A machine learning-
based approach, such as the one used in MDLoader, can help
guide this choice and could be adapted in UNICONN [33].

Other projects, such as [12], combine two-sided and one-
sided models using MPI and NVSHMEM to improve perfor-
mance in specific applications on NVIDIA GPUs. In contrast,
UNICONN is designed as a general-purpose layer to support
existing and emerging communication libraries with minimal
code changes for new or existing applications.

With the growing availability of vendor-supported libraries,
several studies have benchmarked GPU-aware MPI, NCCL/R-
CCL, and NVSHMEM [1], [34]. On systems like Leonardo
and Alps, NCCL often outperforms MPI for collectives on
NVIDIA GPUs. RCCL performs well for large messages on
AMD but poorly on small-message collectives. NVSHMEM
has shown competitive results for Jacobi solvers on Sum-
mit [35], [36], but its reliance on CPU progress threads limits
device-initiated communication. While InfiniBand GPUDirect
Async (IBGDA) addresses this, its deployment is still limited.
Recent work on the Karolina Supercomputer demonstrates
fully CPU-free Jacobi and CG solvers using NVSHMEM with
better scaling than MPI on up to eight GPUs [37]. These trends
underscore the need for a unified, portable communication
abstraction like UNICONN to navigate the diverse capabilities
and performance trade-offs across platforms.

VIII. CONCLUSION

On modern systems accelerated with GPUs, applications
can employ various communication libraries like MPI, NC-

CL/RCCL, and NVSHMEM for data movement. However,
the distinct APIs of these libraries, different semantics, and
varying performance across systems create programming com-
plexity and hinder performance portability. In this paper, we
introduced UNICONN, a high-level, portable C++ communi-
cation library that supports both point-to-point and collective
operations across GPU clusters. UNICONN enables seamless
switching between communication backends and APIs (host or
device) with minimal changes to the application code. We eval-
uated UNICONN with latency/bandwidth benchmarks and two
numerical solvers. The results demonstrated that UNICONN
introduces negligible overhead while ensuring performance
portability across diverse systems. Future work will focus
on expanding UNICONN’s application support and backend
compatibilities, automating the migration from legacy code,
and performance-guided automated backend library selection.

ACKNOWLEDGMENT

Authors from Koç University have received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 949587). This material is based upon
work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC)
program under Award Number DE-AC02-05CH11231, and
used resources of the National Energy Research Scientific
Computing Center (NERSC). We acknowledge EuroHPC
Joint Undertaking for awarding the project ID EHPC-DEV-
2024D10-091 access to the MareNostrum5 supercomputer in
Spain and the LUMI supercomputer in Finland.

REFERENCES

[1] D. Unat, I. Turimbetov, M. K. T. Issa, D. Sağbili, F. Vella, D. D. Sensi,
and I. Ismayilov, “The landscape of gpu-centric communication,” 2024.
[Online]. Available: https://arxiv.org/abs/2409.09874

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: an imperative style, high-
performance deep learning library. Red Hook, NY, USA: Curran
Associates Inc., 2019.

[3] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan,
M. Day, B. Friesen, K. Gott, D. Graves, M. P. Katz, A. Myers,
T. Nguyen, A. Nonaka, M. Rosso, S. Williams, and M. Zingale,
“Amrex: a framework for block-structured adaptive mesh refinement,”
Journal of Open Source Software, vol. 4, no. 37, p. 1370, 2019.
[Online]. Available: https://doi.org/10.21105/joss.01370

[4] J. Zhang, J. Brown, S. Balay, J. Faibussowitsch, M. Knepley, O. Marin,
R. T. Mills, T. Munson, B. F. Smith, and S. Zampini, “The PetscSF
scalable communication layer,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 4, pp. 842–853, 2022.

[5] A. Abdelfattah, N. Beams, R. Carson, P. Ghysels, T. Kolev,
T. Stitt, A. Vargas, S. Tomov, and J. Dongarra, “Magma: Enabling
exascale performance with accelerated blas and lapack for diverse
gpu architectures,” The International Journal of High Performance
Computing Applications, vol. 38, no. 5, pp. 468–490, 2024. [Online].
Available: https://doi.org/10.1177/10943420241261960

[6] X. S. Li, P. Lin, Y. Liu, and P. Sao, “Newly released capabilities
in the distributed-memory superlu sparse direct solver,” ACM Trans.
Math. Softw., vol. 49, no. 1, Mar. 2023. [Online]. Available:
https://doi.org/10.1145/3577197

11



[7] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[8] V. Jatala, R. Dathathri, G. Gill, L. Hoang, V. K. Nandivada, and K. Pin-
gali, “A study of graph analytics for massive datasets on distributed
multi-gpus,” in 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2020, pp. 84–94.

[9] J. Choi, Z. Fink, S. White, N. Bhat, D. F. Richards, and L. V. Kale,
“Gpu-aware communication with ucx in parallel programming models:
Charm++, mpi, and python,” in 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2021, pp.
479–488.

[10] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and
B. Van Essen, “Aluminum: An asynchronous, GPU-aware communica-
tion library optimized for large-scale training of deep neural networks
on HPC systems,” in Proceedings of the Workshop on Machine Learning
in HPC Environments (MLHPC), 2018.

[11] Q. Anthony, A. A. Awan, J. Rasley, Y. He, A. Shafi, M. Abduljabbar,
H. Subramoni, and D. Panda, “Mcr-dl: Mix-and-match communication
runtime for deep learning,” in 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2023, pp. 996–1006.

[12] J. Zhang, J. Brown, S. Balay, J. Faibussowitsch, M. Knepley, O. Marin,
R. T. Mills, T. Munson, B. F. Smith, and S. Zampini, “The petscsf
scalable communication layer,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 4, pp. 842–853, 2022.

[13] NVIDIA, “GPUDirect RDMA,” https://docs.nvidia.com/cuda/gpudirect-
rdma/, 2023.

[14] AMD, “ROCnRDMA,” https://github.com/rocmarchive/ROCnRDMA,
2023.

[15] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K.
Panda, “Efficient inter-node mpi communication using gpudirect rdma
for infiniband clusters with nvidia gpus,” in 2013 42nd International
Conference on Parallel Processing, 2013, pp. 80–89.

[16] OpenMPI, “Open MPI v5.0.x Documentation: CUDA,”
https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html,
2023.

[17] HPE, “Cray MPICH Documentation,”
https://cpe.ext.hpe.com/docs/mpt/mpich/intro mpi.html, 2021.

[18] K. Shafie Khorassani, J. Hashmi, C.-H. Chu, C.-C. Chen, H. Subramoni,
and D. K. Panda, “Designing a rocm-aware mpi library for amd gpus:
Early experiences,” in High Performance Computing, B. L. Chamberlain,
A.-L. Varbanescu, H. Ltaief, and P. Luszczek, Eds. Cham: Springer
International Publishing, 2021, pp. 118–136.

[19] AMD, “ROCm Documentation: GPU-Enabled MPI,”
https://rocm.docs.amd.com/en/latest/how to/gpu aware mpi.html,
2023.

[20] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss et al., “Ucx: an
open source framework for hpc network apis and beyond,” in 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. IEEE,
2015, pp. 40–43.

[21] A. Weingram, Y. Li, H. Qi, D. Ng, L. Dai, and X. Lu, “xccl: A survey
of industry-led collective communication libraries for deep learning,” J.
Comput. Sci. Technol., vol. 38, no. 1, p. 166–195, Mar. 2023. [Online].
Available: https://doi.org/10.1007/s11390-023-2894-6

[22] NVIDIA, “NCCL,” https://developer.nvidia.com/nccl, 2025.
[23] AMD, “RCCL,” https://rocm.docs.amd.com/projects/rccl/en/latest/,

2025.
[24] Intel, “OneCCL,” https://uxlfoundation.github.io/oneCCL/index.html,

2025.
[25] NVIDIA, “Nvshmem,” https://developer.nvidia.com/nvshmem, 2024.
[26] AMD, “ROC SHMEM,” https://github.com/ROCm-Developer-

Tools/ROC SHMEM, 2023.
[27] K. Hamidouche and M. LeBeane, “Gpu initiated openshmem: Correct

and efficient intra-kernel networking for dgpus,” in Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 336–347. [Online]. Available:
https://doi.org/10.1145/3332466.3374544

[28] Intel, “Intel® SHMEM,” https://github.com/oneapi-src/ishmem, 2023.

[29] NVIDIA, “Magnum IO GDRCopy,”
https://developer.nvidia.com/gdrcopy, 2023.

[30] O. S. U. Network-Based Computing Laboratory (NBCL), “Osu micro
benchmarks,” https://mvapich.cse.ohio-state.edu/benchmarks/.

[31] J. Baydamirli, T. Ben Nun, and D. Unat, “Autonomous execution
for multi-gpu systems: Compiler support,” in Proceedings of the
SC ’24 Workshops of the International Conference on High
Performance Computing, Network, Storage, and Analysis, ser. SC-
W ’24. IEEE Press, 2025, p. 1129–1140. [Online]. Available:
https://doi.org/10.1109/SCW63240.2024.00155

[32] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[33] J. Bae, J. Y. Choi, M. L. Pasing, K. Merita, P. Zhang, and K. Z. Ibrahim,
“Mdloader: A hybrid model-driven data loader for distributed graph
neural network training,” in Proceedings of the SC ’24 Workshops of the
International Conference on High Performance Computing, Network,
Storage, and Analysis, ser. SC-W ’24. IEEE Press, 2025, p. 1046–1057.
[Online]. Available: https://doi.org/10.1109/SCW63240.2024.00145

[34] D. De Sensi, L. Pichetti, F. Vella, T. De Matteis, Z. Ren, L. Fusco,
M. Turisini, D. Cesarini, K. Lust, A. Trivedi, D. Roweth, F. Spiga,
S. Di Girolamo, and T. Hoefler, “Exploring gpu-to-gpu communication:
Insights into supercomputer interconnects,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC ’24. IEEE Press, 2024. [Online].
Available: https://doi.org/10.1109/SC41406.2024.00039

[35] C.-H. Hsu, N. Imam, A. Langer, S. Potluri, and C. J. Newburn, “An
initial assessment of nvshmem for high performance computing,” in 2020
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2020, pp. 1–10.

[36] T. Groves, B. Brock, Y. Chen, K. Z. Ibrahim, L. Oliker, N. J. Wright,
S. Williams, and K. Yelick, “Performance trade-offs in gpu commu-
nication: A study of host and device-initiated approaches,” in 2020
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2020, pp. 126–137.

[37] I. Ismayilov, J. Baydamirli, D. Sağbili, M. Wahib, and D. Unat,
“Multi-gpu communication schemes for iterative solvers: When cpus
are not in charge,” in Proceedings of the 37th International Conference
on Supercomputing, ser. ICS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 192–202. [Online]. Available:
https://doi.org/10.1145/3577193.3593713

12


