The Persistent Challenge of Data locality in
Post-Exascale Era

Didem Unat, Kog¢ University, Istanbul, Turkey
Anshu Dubey, Argonne National Laboratory, USA

Emmanuel Jeannot, /nria, LaBRI, U. Bordeaux, France

John Shalf, Lawrence Berkeley National Laboratory, USA

Abstract—

The era of exascale computing, exemplified by systems like Frontier, achieving
exaflop-level performance marks a milestone. However, the quest for sheer
compute power leads to strong imbalance in system design. Hence, scaling
advancements in memory, network bandwidth, and storage are also necessary
and poses challenges, with a crucial need to address data locality issues. This
paper underscores the fundamental importance of data locality as a key
abstraction for optimizing application performance. Despite notable software
solutions, the growing complexity of parallelism and memory hierarchy demands
performance portable data locality solutions across diverse computing platforms.
The manuscript revisits data locality aspects, covering hardware considerations,
application perspectives, software stack abstractions and tool support. It concludes
with insights into data locality challenges and opportunities, emphasizing the
ongoing significance of collaborative research for progress in this critical issue.

The High-Performance Computing (HPC) community
has achieved a milestone in the exascale era, exem-
plified by Frontier' and Aurora® which are capable of
reaching exaflop-level performance. In addition to tech-
nological evolution in computational speeds, this level
of performance also required scaling up memory and
network bandwidth, storage and memory capacity, and
latency by a factor of 1,000 compared to their petas-
cale counterparts However, further improvements in
memory and network efficiency are constrained by the
energy required to transport data to the computational
cores on a chip and within a system, resulting in a
noticeable bottleneck at every level of the memory
and communication hierarchy. As a consequence, the
ability of the optimizing software stack to position data
at the right place at the right time, defined as data
locality, becomes a critical abstraction rather than a
mere tuning option that it used to be in the past.
While there have been notable advancements in
software support for data locality since Wolfe’'s 1989

XXXX-XXX © 2025 IEEE

Digital Object Identifier 10.1109/XXX.0000.0000000
Thttps://www.olcf.ornl.gov/frontier/
2https://www.alcf.anl.gov/aurora

Published by the IEEE Computer Society

paper 'More lteration Space Tiling, it is clear that
the challenge continues. An imbalance has always
existed between growth in concurrency and the cost
of data movement, the latter being much slower to
improve. Although exponential growth in concurrency
has slowed down, the issue of data movement costs
has worsened [3], [11] instead of improving. The effi-
ciency of data movement in copper wires has remained
stagnant over the past decade because of fundamental
physics. When the size of a transistor is reduced, its
intrinsic capacitance decreases, leading to improved
efficiency. However, the resistance of copper wire at
room temperature is already near its optimal state.
When data traverses the chip for tasks like cache-
coherence or inter-processor communication, it exacts
a toll in terms of power consumption, and also compro-
mises computational performance due to latency and
bandwidth constraints.

The simultaneous escalation of core heterogeneity
and memory diversity has created an intricate web of
complexities which require data movement solutions
at intra-node, inter-node, and global system commu-
nication levels. We need higher-level abstractions and
algorithmic innovations to assist application developers
in tackling this growing complexity and reduce the
effort required to adapt codes to different computing
platforms. Performance portability has now become

Computing in Science & Engineering

10,000,000

—@— Local memory BW (FLOPS/Word)
------- +15% per year, 4.0x/decade
—@— Local memory latency (Core FLOPS*latency)
1,000,000 | +20% per year, 6.2x/decade
<~ Inter connect BW (FLOPS/Word)
+25% per year, 9.3x/decade
—#— Inter connect latency (Core FLOPS*latency)
------- +18% per year, 5.2x/decade

100,000

10000 e

1,000

1990 1995 2000 2005

2010 2015 2020 2025

FIGURE 1. System balance evolution between memory, network and compute (The data collection and the Figure were provided

by John McCalpin, Texas Advanced Computing Center).

synonymous with being able to compute on increas-
ingly heterogeneous computing platforms.

We revisit and remind the community about this
important problem as described in our community sur-
vey paper from more than a decade ago [12]. This
manuscript covers various aspects of the data locality
challenges that needed to be addressed then, and
have since become more urgent and complex. New
challenges are brought forth by two orthogonal axes
of rapidly expanding diversity in platforms and scien-
tific workflows. These challenges range from hardware
considerations and application perspectives to abstrac-
tions within the software stack.

HPC community needs to foster collaborative in-
teractions between domain scientists, computer scien-
tists, and applied mathematicians to make progress,
because, we believe that earlier model of siloed de-
velopments and innovations are unlikely to meet the
growing challenges in this area. The next sections in
the paper enumerate and describe these challenges
in more detail individually. We begin with the lowest
layers of the software stack, then address challenges
at the application level before focusing on the interme-
diate layers (e.g., system software). The final section
examines algorithms, which present challenges that
span across all layers. The concluding section provides
outlooks pertaining to the data locality challenges and
opportunities.

Over the preceding decades, when transistors got
smaller, their operating voltage could also be re-
duced, which led to huge energy efficiency gains as
power consumption is approximately proportional to
V2F where V is the voltage and the clock frequency
is F. The phenomenal gains in energy reduction cou-
pled with reduced gate capacitance, led to exponential
increases in clock frequency. However, that stalled
when devices reached a supply voltage of close to
0.5V since below that voltage it becomes difficult to
turn a transistor completely on or completely off. This
end of Dennard scaling forced chip manufacturers to
turn from exponentially increasing clock frequencies to
exponentially increasing data-parallelism. But it also
led to a situation where transistors continued to im-
prove in energy efficiency as they further shrank, but
the energy efficiency of the wires (the interconnect)
that connected those transistors together into a circuit
ceased to improve because the resistance of those
connections increased if the wire was reduced in size,
or at best did not improve where on-chip wires were
kept at the same diameter.

Another significant trend is related to the increasing
disparity between computational power and memory
performance. McCaplin highlights the fact that mem-
ory performance has been significantly trailing be-
hind computational power, with a ratio of more than

The Persistent Challenge of Data locality in Post-Exascale Era 2025

AVERAGE PERFORMANCE IMPROVEMENT PER 11 YEARS FOR SUM OF
TOPSO00 LIST SYSTEMS

FIGURE 2. This figure shows the 11 year average rate of growth in the performance of the sum of all machines on the Top500

list from 2003 until present.

100x per decade for memory latency and 4.5x per
decade for memory bandwidth [8]. More recent data,
as illustrated in Figure 1, shows that the trends are
continuing: memory latency is decreasing at a slower
rate than the growth of processing power (Flops) (20%
per year on average). As non-uniform memory access
has become the standard approach for designing and
configuring multicore/multiprocessor systems, and with
the emergence of heterogeneous memory systems
featuring technologies like High Bandwidth Memory
(HBM), Dynamic Random Access Memory (DRAM)
and Non-volatile memories simultaneously, the cost of
misplacing data objects (buffers) has become highly
detrimental and problematic at the node level. In large-
scale supercomputers, as noted by the authors in [7],
they have observed a similar trend: a decrease in the
ratio of total memory bandwidth to the HPL perfor-
mance of top-tier supercomputers. This ratio dropped
from 1.18 for BlueGene L in 2009 to 0.13 for Frontera in
2019. Consequently, the need for locality-aware tools
and methodologies to comprehend the various unex-
plored trade-offs has become critical for optimizing
performance in modern HPC systems.

As the performance of individual processing cores
has ceased improving, there are moves to exploit
specialization and even accelerators that exploit new
dimensions of parallelism beyond data-parallelism. The
industry has embraced chiplets, where different types
of cores are integrated into a single processor chip, as
a means to co-integrate diverse heterogeneous accel-

erators — mostly driven by the AI/ML market. Some
of these emerging architectures employ a classical
dataflow execution model, which creates new opportu-
nities and challenges of exposing and preserving data
locality.

Device-centric communication as mechanisms for
multi-accelerator execution has become the trend to
reduce the involvement of the CPU in the critical path
as a way to improve data locality [5]. Historically, Net-
work Interface Cards (NICs) were typically connected
directly to the CPU or, in more recent designs, to a
PCle switch linked to both the CPU and GPUs. Given
that the data primarily resides in GPU’s memory, they
are now being placed on the GPU-device to reduce
latency. For example, AMD’s Infinity Fabric is a high-
performance interconnect technology designed to facil-
itate communication and data transfer between various
components within AMD processors and GPUs. Sim-
ilarly, NVLink of Nvidia facilitates high bandwidth and
low latency direct access between Nvidia GPUs and
addresses the bandwidth limitations of PCle, which
has been observed to be a transfer bottleneck in GPU-
accelerated applications.

Hence, in summary, the challenges of the end of
Dennard scaling and of the cost of data movement
remain, with the latter becoming worse over the past
decade. The emerging challenge is the slowing of
Moore’s Law that has led to a dramatic slowdown in
the rate of performance improvement for HPC sys-
tems. As shown in Figure 2 there was a consistent

2025 The Persistent Challenge of Data locality in Post-Exascale Era

500x improvement every decade in performance in
the early days, but that rate has slowed down to less
than 10x every decade. The burgeoning Al/ML market
has responded to the Moore’s Law slowdown with a
plethora of heterogeneous accelerators and memo-
ries as a means of continuing performance growth
through architecture specialization and extensive use
of lower/mixed precision. These trends are bound to
penetrate into the HPC ecosystems also.

Traditional scientific applications often see a positive
feedback loop, where an increasing level of under-
standing leads to the development of more complex
models. These models, in turn, demand the creation
of more complex software. Furthermore, end-to-end
workflows are evolving to incorporate a diverse range
of models. These workflows can encompass a spec-
trum of computational techniques, including partial
differential equation solvers, algebraic solvers, Al/ML-
based models, and other data analytics components,
all integrated into a single process. These trends
increase the diversity of data and memory access
patterns, usually with significantly adverse effect on
data locality of the application.

It is not obvious at all that the challenge of dimin-
ishing locality has even begun to be appreciated by
the applications community. In the current generation
of platforms most of the computational power resides in
GPUs, motivating applications to move their flops to the
GPUs. That merely changes the focus from one type
of data locality (maximizing on-node computation and
cache reuse) to node level data locality with massive
fine-grained parallelism. In the worst case, applications
maintain two algorithmic variants for their software if
there is significant differences between CPU and GPU
versions and they intend to use both.

However, with the landscape shifting towards spe-
cialized hardware as mentioned in the previous sec-
tion, the next generation of HPC machines are likely
to be very different. Also, routine inclusion of Al/ML
models at production level in simulations is still in its
infancy. So true reckoning with the impact of complex
workflow on data locality has not occurred for a vast
majority of applications. If the trend towards special-
izations accelerates, and in many ways that seems
the only way to gain greater computational capacities,
mere band-aid solutions are unlikely to yield needed
outcomes. From the scientific workflow’s standpoint
this is a three-way challenge — understanding the
computational behavior of the application to identify
the potential for data locality, understanding the map

of data locality to specific hardware resources, and the
ability to express the map to program models effec-
tively. For application developers this will imply greater
emphasis on flexible and composable software design,
and for abstractions and programming models this will
imply providing ways to expose data locality of the
application to optimizers and computation mappers.
Neither of these objectives can be achieved without
changing the development model from siloed one to
collaborative one as mentioned earlier.

In many systems, we are facing heterogeneous mem-
ory with fast but small memory (such as High Band-
width Memory) or large but slower memory (such as
Non-Volatile Random Access Memory). Managing data
placement and buffer allocation across these levels is
crucial for performance.

Several software libraries, such as libnuma for man-
aging Non-Uniform Memory Access (NUMA) nodes
and memkind for high-bandwidth memory allocation,
expose memory system functionality and provide spe-
cialized behavior. However, these tools operate inde-
pendently and lack a unified approach to managing
heterogeneous memory across tiers. For instance, lib-
numa places memory pages in specific NUMA nodes,
and memkind allocates memory in faster memory tiers.
Yet, neither considers node-specific performance or
capacity constraints for data placement. Additionally,
OpenMP-level tools manage buffer allocation in differ-
ent memory kinds but fail to address key challenges,
such as dynamic data migration between tiers and
transparent interception of memory allocation without
modifying application code. What is missing is not just
additional tools but a composable, automated frame-
work that integrates existing libraries to seamlessly
handle memory placement, migration, and allocation
across heterogeneous memory systems.

Another key challenge in launch-time optimization
is multi-layered mapping, which involves assigning
resources across various system hierarchies—cores,
sockets, nodes, and racks—while accounting for com-
munication patterns and data locality. Effective map-
ping must balance intra-node locality to optimize mem-
ory access and inter-node locality to minimize com-
munication overhead. However, current tools lack the
ability to automate this process across all levels.

In addition, application phase management is es-
sential for performance. Applications often progress
through distinct phases, each with unique resource and
data requirements (e.g., data loading, computation,
aggregation). Ideally, resource mappings should adjust

The Persistent Challenge of Data locality in Post-Exascale Era 2025

dynamically to match these changing patterns.

While tools like hwloc handle node-level topology,
we lack portable tools for managing inter-node and
storage hierarchies, which complicates data-locality-
aware resource selection. For example, automatic I/O
node selection on systems like Theta can lead to
suboptimal data access if storage locality is not consid-
ered. Addressing these gaps requires dynamic, phase-
aware mapping frameworks that optimize both data
movement and resource usage throughout an appli-
cation’s lifecycle.

When distributed memory parallelism was the domi-
nant model, scaling optimizations could often be ad-
dressed separately from arithmetic and computational
optimizations. These scaling strategies tended to gen-
eralize well across platforms with minimal code ad-
justments, while most of the platform-specific tuning
focused on node-local optimizations to improve cache
locality. As mentioned in the previous section this
paradigm has continued to hold in the current genera-
tion of platforms, but with significant increase in node-
level complexity. The dominant approach to implement-
ing high-performance computing (HPC) applications is
to use hybrid models that can be generalized as MPI
+ X (e.g. OpenMP, CUDA, SYCL, HIP, or C++ based
abstractions) where MPI handles offnode parallelism,
while X handles node local parallelism. While Parti-
tioned Global Address Space (PGAS) models have
seen limited adoption, Nvidia’s NVSHMEM has been
gaining popularity. All of these approaches have per-
mitted the applications to remain viable with relatively
modest modifications largely focused on restructuring
of hot-spots in the solvers.

However, with hardware within nodes getting more
complex as shown in Figure 3 these solutions are
unlikely to remain sufficient to address the variety of
computational patterns that may emerge. The HPC
community needs a fundamental shift in programming
and execution environments to support features critical
for optimizing data locality within nodes. These fea-
tures should include:

e Explicit expression of locality. The working set
of data should be mappable to specific memory
hierarchies and specialized devices (e.g., GPU
memory, HBM, or shared caches) without requir-
ing extensive manual data restructuring.

e Separation of algorithmic logic from memory-
specific optimizations. The ability to express in-

1000
Exa
Peta \
‘ 1.5x from transistor

100 670x from parallelism

8x from Lransistor
Tera 128x fror‘n parallelism

10

Relative Transistor Performance

‘ 32x from transistor

Giga 32x from parallelism

1

1986 1996 2006 2016
FIGURE 3. More performance is derived from parallelism than
from transistor performance. Figure was provided by Shekhar
Borkar, Qualcomm Inc.).

variant components of software independently
of data layout allows flexibility, akin to how C++
abstractions like templates facilitate this separa-
tion.

e Efficient specification or inference of computa-
tion and data movement. To avoid costly mem-
ory transfers, the system must efficiently map
computations and their associated data to the
appropriate devices, minimizing latency and op-
timizing resource utilization.

While some of these features are available in ex-
isting tools and frameworks (e.g., CUDA or OpenMP
for explicit memory placement, polyhedral methods for
dependency analysis), they remain incomplete. Ad-
ditionally, Python’s widespread use in deep learning
has made it a contender in the HPC space even
though it lacks a performant ecosystem for anything
other than deep learning so far. New Programming
langagues (e.g. Chapel, Julia), and enhancements to
existing languages provide better solution, however,
while transitioning to a new programming language
might be optimal in the long term, it is impractical for
the short term. To address sustainability concerns and
verification challenges, an incremental adoption strat-
egy for existing codes is essential. In the next section
we discuss how redesigning programming systems can
help in mitigating some of these challenges.

Programming Systems

The traditional languages of choice in HPC applica-
tions have been C/C++/Fortran, with Python rapidly
gaining because of deep learning as mentioned earlier.
All of these languages lack mechanisms to make data
dependencies and locality constraints explicit in the
source code. Instead, memory is often treated as a

2025 The Persistent Challenge of Data locality in Post-Exascale Era

linear, sequential space, leaving the burden on com-
pilers or runtimes to infer efficient layouts—frequently
with suboptimal results. What is missing are high-level
constructs that expose data locality and memory hier-
archies directly within the language semantics. Cache-
friendly data layouts and tile-based decompositions, for
example, are crucial for modern architectures but are
difficult to express and manage in languages designed
for sequential execution. Polyhedral methods have
proven effective for optimizing loop nests and analyzing
data dependencies in regular workloads but struggle
with dynamic or irregular data structures, making them
insufficient as a universal solution.

A more comprehensive solution would involve in-
tegrating data locality annotations, hierarchical mem-
ory abstractions, and predictable data movement pat-
terns directly into programming models. Effective ab-
stractions for data locality in any programming model
must balance low overhead with high-level semantic
information. This includes providing data dependency
details critical for compiler optimizations and runtime
efficiency. Innovative approaches like using the visi-
bility algorithm [1] from computer graphics for depen-
dency analysis offer promise. Addressing side effects
is equally important, where declarative solutions and
modern languages provide notable advantages over
traditional languages, which often rely on conservative
assumptions about external function calls. Abstractions
should accommodate both automatic and explicit data
movement, with varying levels of control tailored to
specific use cases.

Tiling based programming models point to a way
forward by providing a structured way to express and
manage memory through tiled computation patterns.
While these show promise in balancing portability and
performance, they cannot do so without being deeply
integrated into the application’s computational struc-
ture, which may necessitate significant code refactor-
ing.

Many computational science and engineering appli-
cations follow a bulk-synchronous model, which sim-
plifies dependency handling for regular applications.
However, hardware heterogeneity has made lockstep
execution increasingly impractical. To address this,
the growing synchronization costs associated with ex-
treme parallelism must be mitigated. This calls for a
reevaluation of Bulk Synchronous Programming (BSP)
models in favor of task-based programming. A well-
designed API that supports hierarchical decomposition
and dependencies can allow applications to account
for runtime locality without requiring a shift to func-
tional programming. Current task based models are too
general, therefore have too much overhead and nearly

impossible to integrate with existing applications.

Beyond static analysis, profiling, auto-tuning, and
user feedback play essential roles in optimizing perfor-
mance. While user-provided hints will remain relevant,
automated, measurement-driven tools are better suited
for scaling to large codes. The hierarchical nature of
modern hardware is well-established, but its exposure
to users varies. Domain-specific solutions, tailored to
specific hardware hierarchy levels, may offer the best
outcomes. The success of new programming systems
hinges on effective application adoption and collabo-
ration between introspection and application guidance
for optimization through performance models and tools
described in the next section.

Performance Modeling and Tools

Performance models are essential for guiding the soft-
ware stack (e.g., compilers and runtime systems) or
aiding programmers by providing a comprehensive
application model integrated with a machine model.
Current modeling approaches encompass static, dy-
namic, empirical, and learning-based cost models,
each complementing the other. In addition, learning-
based models maintain databases of application con-
figurations and tuning parameters, enabling perfor-
mance predictions for future runs. Al-assisted tools are
rapidly emerging to help users interpret and analyze
profiling data. A key advancement for these tools is
extending their capabilities to support data locality
optimizations and offer actionable suggestions for code
improvements.

The primary challenge in performance modeling
lies in creating models that are both concise and
precise while ensuring their practical utility and feasibil-
ity for real-world applications. Several Roofline-based
modeling tools have been developed to extract the
arithmetic intensity of applications, gaining widespread
adoption among leading vendors. Some of these tools
also offer guidance to users on improving performance
and data locality by analyzing profiled data. Although
numerous tools are available for measuring, moni-
toring, and analyzing performance—some specifically
focusing on data movement—understanding the data
generated by tools is almost an expertise of its own
which most users lack. Moreover, very few tools [6]
provide information about cross-node communication
for newly emerged technologies such as NCCL, RCCL,
and NVSHMEM. Lastly, tools for power monitoring are
limited, either because power consumption is consid-
ered less critical to end-users compared to perfor-
mance, or because vendors provide only restricted
means for its measurement.

The Persistent Challenge of Data locality in Post-Exascale Era 2025

In short, significant opportunities for improvement
include: i) enhancing the presentation of data to be
more intuitive for programmers, facilitating reasoning
about data locality optimizations; ii) addressing the
lack of support for correlating power consumption with
performance; and iii) incorporating advanced visualiza-
tion and feedback mechanisms to assist end-users in
performance debugging through Al or non-Al based
solutions.

The focus of performance portability across differ-
ent hardware architectures has largely been on data
structures and access patterns without changing the
algorithm. In many instances this is insufficient —
some algorithms simply do not map well on certain
architectures. For example algorithms with random
or irregular access patterns are not well suited for
GPUs. At times algorithms acquire irregularity in an
attempt to reduce computation, an approach that is
helpful for better performance on the CPUs. In those
instances, rethinking the control structure of a com-
putation can significantly enhance its data locality on
target devices. For example, in the context of SuperLU,
by redesigning the algorithm with 3D communication-
avoiding techniques, a 24x speedup was achieved [10],
demonstrating strong scaling to 4,096 GPUs.

In contrast, there are applications where irregularity
is unavoidable in known algorithms. In the absence of
any new algorithm without irregularity emerging, the
applications may resort to profiling and user intuition
with fine tuning to minimize the cost incurred due to
irregularity. Given that fine tuning is usually platform
specific the application may end up with several ver-
sions of the implentation. A concommitant challenge
is maintaining these algorithmic variants for different
devices. C++ based abstractions solved this challenge
of multiple implementation variants for data structures
and patterns, but they cannot handle algorithmic vari-
ants. CG-Kit [9] is a new tool that confronts some of
these challenges. It generates code control structure
from a recipe while user defined arithmetic sections
act as building blocks for the code. For this, or other
similar approaches to be effective cost-benefit analysis
is necessary, which in turn needs performance modes
described in section .

In another development, mixed precision has
proven highly effective in Al workloads and offers
significant potential for HPC applications. The pri-
mary advantage lies in reducing data movement rather
than lowering compute costs [2] as lower-precision
data requires less bandwidth and storage, leading to

faster communication and reduced energy consump-
tion. However, leveraging mixed precision in HPC re-
quires tools to identify which parts of the code can
tolerate lower precision and which require higher pre-
cision. Moreover, the concept of precision is evolving,
and adopting mixed precision is a promising strategy
for incorporating emerging Al accelerators in HPC.
Numerous studies demonstrate that HPC can benefit
from mixed precision by revising algorithms to accom-
modate precision loss. Achieving this, however, ne-
cessitates close collaboration between domain experts
and computer scientists. Lastly, to seamlessly integrate
mixed precision into applications, new algorithms and
support from programming systems, as well as verifi-
cation methods, are essential.

Over the last decade, although the pace of exponential
growth in concurrency has moderated, the relative cost
of data movement has become worse. The machine
imbalance between compute speed and memory band-
width has been increasing at a rate of 15-30% per
year [4]. Thus, data movement optimizations both in
the hardware and software are more important than
ever. Next, we highlight some of the challenges and
opportunities for data locality management research
(both hardware and software) in the near future.

e HPC is no longer solely about performance;
data locality solutions now also need to consider
programmer productivity and code portability.

e With the rising costs of data movement and in-
creasing energy consumption in large-scale sys-
tems, energy-efficient data management strate-
gies will become critical. Research should focus
on optimizing algorithms and hardware designs
to minimize the power footprint of computing.
This requires a shift in mind set where perfor-
mance per watt becomes a major metric.

e HPC systems are not only used for simulation
but also for the training and inference of Al mod-
els. Large-scale models trigger new challenges
as they require managing both training data and
models efficiently across nodes and within a
node.

e Even though we have entered the exascale era,
it is unlikely that we will achieve 100 exaflops
by the end of this decade using the same path
that led to the first exaflop system. Thus, any
performance improvements will likely come from
algorithmic changes, software optimizations, and
co-design.

2025 The Persistent Challenge of Data locality in Post-Exascale Era

Codesign integrates hardware and software de-
velopment to optimize performance by abstract-
ing hardware diversity through libraries, allowing
applications to indirectly leverage hardware fea-
tures. Adopting this approach more broadly can
help address data locality challenges effectively.
It is no longer sufficient to focus on programming
languages alone. We need to work within an
ecosystem to provide automation for data locality
management.

Generative Al can be helpful in writing data-
locality-aware code, providing hints on direc-
tives, helping in performance debugging by an-
alyzing and profiling the code.

In order to mitigate the increasing synchroniza-
tion costs associated with achieving extremely
high levels of parallelism, it becomes essential to
reassess conventional programming models and
adopt modern alternatives, such as task-based
programming models.

Hiding communication latency is becoming pro-
gressively challenging. It is necessary to develop
new algorithms aimed at reducing and hiding
communication, sometimes even at the expense
of redundant computation.

Existing libraries that offer specialized memory
management lack a unified approach for han-
dling heterogeneous memory; a composable,
automated framework integrating these tools is
needed to streamline memory placement, migra-
tion, and allocation.

As systems grow larger, the cost of data
movement in fault-tolerant mechanisms (e.g.
checkpoint-restart or data replication) becomes
significant. Research into resilient algorithms
that reduce unnecessary data movement while
maintaining fault tolerance is crucial.

The notion of precision is undergoing a transfor-
mation. Employing mixed precision represents a
promising approach to mitigate data movement.
To fully integrate mixed precision in applications,
there is a requirement for the development of
new algorithms and support from programming
systems.

Traversing the chip for cache-coherence or other
inter-processor communication is costly either
in power (if the on-chip data paths are over-
designs) or in computational performance due to
latency and bandwidth bottlenecks. Thus locality
management even within the chip has never
been more important.

Advanced packaging has enabled tighter inte-
gration of accelerators and CPUs, such as the

Accelerated Processing Unit (APU) where the
GPUs and CPUs are co-integrated in the same
package. As chiplets technologies become more
pervasive, we anticipate heterogeneous integra-
tion of other features such as co-packaged op-
tics to offer massive bandwidth between compo-
nents of future systems.

e New emerging technologies (Compute Express
Link, Processing in Memory, and Nonvolatile
Memory) raise new challenges in terms of per-
formance and data access. Integrating these
technologies can enhance data locality by en-
abling dynamic memory pooling, efficient ac-
cess, and reduced data movement.

In summary, this manuscript aims to unite researchers
around the crucial concept that prioritizing data locality
is fundamental for organizing computation. The evident
tight connection between data locality and parallelism
highlights the predominant focus of existing program-
ming abstractions on compute-related concepts. It is
now imperative to recognize data locality as the cor-
nerstone of computation, especially as hopes for ar-
chitectural improvements wane. Potential performance
enhancements are anticipated through changes in al-
gorithms, software optimizations, and comprehensive
system redesigns.

Within the HPC community, there is active explo-
ration of innovative approaches to describe computa-
tion and parallelism while minimizing data movement.
The nearing maturity of some projects in this field
underscores the urgency for research collaborations
during this critical phase. Achieving these objectives
requires co-design, community organization, thoughtful
consideration of our impact on the software stack, and
collaborative efforts to develop interoperable solutions
for data locality.

Authors would like to thank the 6% PADAL (Program-
ming and Abstractions for Data Locality Workshop)
participants for engaging in lively discussions at the
workshop, which greatly contributed to the compilation
of this manuscript. Dr. Unat has received funding from
the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation
programme (grant agreement No 949587). This work
was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Re-
search, under contract number DE-AC02-06CH11357.

The Persistent Challenge of Data locality in Post-Exascale Era 2025

2025

. J. McCalpin.

. M. Bauer, E. Slaughter, S. Treichler, W. Lee, M. Gar-

land, and A. Aiken. Visibility algorithms for dynamic
dependence analysis and distributed coherence. In
Proceedings of the 28th ACM SIGPLAN Annual Sym-
posium on Principles and Practice of Parallel Pro-
gramming, PPoPP '23, page 218-231, New York, NY,
USA, 2023. Association for Computing Machinery.

. Q. Cao, S. Abdulah, H. Ltaief, M. G. Genton,

D. Keyes, and G. Bosilca. Reducing data motion and
energy consumption of geospatial modeling applica-
tions using automated precision conversion. In 2023
IEEE International Conference on Cluster Comput-
ing (CLUSTER), pages 330-342, Los Alamitos, CA,
USA, nov 2023. IEEE Computer Society.

. V. Cavé, R. Clédat, P. Griffin, A. More, B. Se-

shasayee, S. Borkar, S. Chatterjee, D. Dunning, and
J. Fryman. Traleika glacier: A hardware-software co-
designed approach to exascale computing. Parallel
Comput., 64(C):33—49, May 2017.

. J. Dongarra, M. Gates, P. Luszczek, and S. To-

mov. Translational process: Mathematical software
perspective. Journal of Computational Science,
52:101216, 2021. Case Studies in Translational
Computer Science.

. |. Ismayilov, J. Baydamirli, D. Sagbili, M. Wahib,

and D. Unat. Multi-gpu communication schemes for
iterative solvers: When cpus are not in charge. In
Proceedings of the 37th International Conference on
Supercomputing, ICS '23, page 192—202, New York,
NY, USA, 2023. ACM.

. M. K. T. Issa, M. A. Sasongko, I. Turimbetov, J. Bay-

damirli, D. Sagbili, and D. Unat. Snoopie: A multi-gpu
communication profiler and visualizer. In Proceed-
ings of the 38th ACM International Conference on
Supercomputing, ICS '24, page 525-536, New York,
NY, USA, 2024. ACM.

. A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and

Y. Kim. An analysis of system balance and archi-
tectural trends based on top500 supercomputers. In
The International Conference on High Performance
Computing in Asia-Pacific Region, HPC Asia 2021,
page 11-22, New York, NY, USA, 2021. Association
for Computing Machinery.

STREAM: Sustainable Memory
Bandwidth in High Performance Computers.
HPCWire https://www.hpcwire.com/2016/11/07/
mccalpin-traces-hpc-system-balance-trends, 2016.

. J. Rudi, Y. Lee, A. H. Chadha, M. Wahib, K. Weide,

J. P. O'Neal, and A. Dubey. CG-Kit: Code genera-
tion toolkit for performant and maintainable variants
of source code applied to Flash-X hydrodynamics

simulations. Future Generation Computer Systems,
163:107511, 2025.

10. P. Sao, X. S. Li, and R. Vuduc. A communication-
avoiding 3d algorithm for sparse lu factorization on
heterogeneous systems. Journal of Parallel and
Distributed Computing, 131:218-234, 2019.

11. J. Shalf. The future of computing beyond moore’s law.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
378(2166):20190061, 2020.

12. D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham,
M. Bianco, B. L. Chamberlain, R. Cledat, H. C. Ed-
wards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot,
A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief,
N. Maruyama, C. J. Newburn, and M. Pericas. Trends
in data locality abstractions for hpc systems. IEEE
Transactions on Parallel and Distributed Systems,
28(10):3007-3020, 2017.

Didem Unat has been a faculty member at Ko¢ Uni-
versity since 2014. She is known for her work on
programming models, performance tools, and system
software for data locality. She received her PhD degree
from the University of California, San Diego in Com-
puter Science. She was named the “Emerging Woman
Leader in Technical Computing” by ACM SigHPC in
2021.

Anshu Dubey is a Senior Computational Scientist in
the Mathematics and Computer Science Division at
Argonne National Laboratory and a Senior Scientist at
the University of Chicago. Her research interest include
sustainability of scientific software, high-performance
computing technologies, performance portability and
software architecture. She received her Ph.D. in com-
puter science from Old Dominion University.

Emmanuel Jeannot is a senior research scientist at
Inria. He earned his PhD degree in computer science
from the Ecole Normale Supérieure de Lyon (France)
in 1999. Since 2009, Jeannot has been at INRIA Bor-
deaux Sud-Ouest, where he leads the TADaaM team,
and at the LaBRI laboratory of the University of Bor-
deaux. His primary research interests include runtime
systems and topology-aware algorithms.

John Shalf John Shalf is Department Head for Com-
puter Science Lawrence Berkeley National Laboratory,
and recently was deputy director of Hardware Technol-
ogy for the DOE Exascale Computing Project. Shalf is
a coauthor of over 80 publications in the field of parallel
computing software and HPC technology.

The Persistent Challenge of Data locality in Post-Exascale Era

https://www.hpcwire.com/2016/11/07/mccalpin-traces-hpc-system-balance-trends
https://www.hpcwire.com/2016/11/07/mccalpin-traces-hpc-system-balance-trends

	Introduction
	Hardware Trends and Emerging Solutions
	Application Software Trends
	Heterogeneous Memory and Storage
	Emerging Programming and Execution Environments
	Programming Systems
	Performance Modeling and Tools

	Algorithms
	Outlook
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Didem Unat
	Anshu Dubey
	Emmanuel Jeannot
	John Shalf

