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ABSTRACT systems from the synchronous model, allowing for asynchronous

GPU kernels may suffer from resource underutilization in multi-
GPU systems due to insufficient workload to saturate devices when
incorporated within an irregular application. To better utilize the
resources in multi-GPU systems, we propose a GPU-sided resource
allocation method that can increase or decrease the number of GPUs
in use as the workload changes over time. Our method employs
GPU-to-CPU callbacks to allow GPU device(s) to request additional
devices while the kernel execution is in flight. We implemented
and tested multiple callback methods required for GPU-initiated
workload offloading to other devices and measured their overheads
on Nvidia and AMD platforms. To showcase the usage of callbacks
in irregular applications, we implemented Breadth-First Search
(BFS) that uses device-initiated workload offloading. Apart from
allowing dynamic device allocation in persistently running kernels,
it reduces time to solution on average by 15.7% at the cost of callback
overheads with a minimum of 6.50 microseconds on AMD and
4.83 microseconds on Nvidia, depending on the chosen callback
mechanism. Moreover, the proposed model can reduce the total
device usage by up to 35%, which is associated with higher energy
efficiency.
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1 INTRODUCTION

Irregular applications are difficult to efficiently implement on multi-
GPU systems. However, recent advances in GPU hardware and
software have allowed performance improvements for these ap-
plications [9]. Direct Peer-to-Peer messaging between the devices
through NVLink [1, 10, 14] made fine-grained irregular commu-
nication inside a single multi-GPU node effective, while staying
free from the CPU orchestration [11]. Moreover, it untangles GPU
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execution. Together with the concept of persistent kernels [12],
where the iteration loop is moved inside the GPU kernel, GPU-
sided communication allows to run the entirety of an application
on the device [13]. Additionally, authors in [9] show that persistent
kernels outperform discrete kernels when the amount of available
parallelism per iteration is low.

Despite these advancements, a multi-GPU system may be prone
to both underutilization or oversubscription of devices [5] because
the workload of irregular applications at every iteration is unpre-
dictable. When the workload is not enough to saturate all the de-
vices for the duration of the execution, dynamic allocation or sched-
uling can be applied to avoid resource wastes and unnecessary
communication overheads. However, in irregular algorithms with
low compute intensity (e.g., Breadth-First Search and other graph
algorithms) scheduling may be impossible to perform. Moreover,
dynamic allocation conflicts with the use of persistent kernels, since
all the initially assigned resources in persistent kernels are busy
throughout the kernel lifetime. Better resource utilization in persis-
tent kernels is therefore only possible on the device granularity.

This work proposes a methodology to dynamically employ de-
vices on multi-GPU systems both in discrete and persistent kernels.
Since it is not possible to directly launch kernels from a GPU kernel
on peer devices, we propose a callback-based scheme for GPU-sided
offloading. To our knowledge, it is the first method described in lit-
erature, for device-sided offloading that works at intra-kernel level.
We show that this method suits well for the irregular applications
due to their highly unpredictable computation and communication
workloads, as it ensures reduced inter-device communication costs,
while maintaining the same processing power of continuously us-
ing many devices. Moreover, GPU as an offloader model constitutes
an important step towards autonomy of GPU devices and frees
them from strict reliance on the host for resource management.

We developed three different callback mechanisms based on
event waiting on GPU streams (event-based callbacks), CPU thread
busy-waiting (busy wait-based callbacks), and non-busy waiting
through interrupts (interrupt-based callbacks). We implemented
asynchronous BFS using work sharing queues [8] and utilized GPU-
initiated offloading with CPU busy-wait callback. The proposed
dynamic scheme is compared against usage of fixed device count
throughout the execution. The list of contributions this work brings
forward is as follows:

o A methodology to dynamically employ devices and a GPU-
to-GPU work offloading mechanism for multi-GPU systems.

o Performance analysis of several GPU-to-CPU callback mech-
anisms on AMD and Nvidia GPUs.

e Example implementation of the proposed offloading mecha-
nism on Nvidia GPUs using BFS.
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o Performance analysis of BFS with dynamic device allocation
in discrete and persistent kernels.

The proposed offloading scheme shows an average 15.7% and
7.3% improvement in terms of time to solution on persistent and
discrete kernels, respectively. The resource utilization is improved
in 8 out of 13 configurations on persistent kernels and 16 out of 18
on discrete kernels.

2 RELATED WORK

To our knowledge, there is no prior work focusing on GPU-initiated
resource management. Thus, we will explore related literature that
influenced the components of this work.

Dynamic Resource Allocation. Though dynamic resource al-
location is widely-used in cloud computing [4, 27], there have been
few works for heterogeneous systems. Park et al. [16] developed a
technique that dynamically partitions GPUs among multiple ker-
nels by allocating one or more streaming multiprocessors (SM) to a
kernel. Vaishnav et al. [24] developed a resource-elastic scheduling
algorithm that schedules workload on FPGAs. Their scheduler can
determine the types of devices, i.e. CPUs or FPGAs, number of com-
pute units, and the types of accelerators that need to be allocated to
each task. Mandal, et al. [15] propose techniques that manage the
resource allocation of heterogeneous system-on-chips at runtime.
Different from the existing works, we dynamically allocate com-
putational resources in our scheme by adding or removing GPU
devices as needed.

Persistent kernels. Authors in [12] discuss potential features
that can be gained by usage of persistent kernels, such as in-kernel
device synchronization, better load balancing and kernel fusion. An
example of uberkernel resulting from fusion of multiple stages of
a GPU application is proposed in WhippleTree [19] and [23]. The
benefit of maintaining the device state is exemplified in [28], where
efficient usage of on-chip memory led to substantial speedup over
non-persistent implementations on a single-GPU. The CPU-free
execution model is introduced in [13] for iterative solvers running
on multi-GPUs, where authors eliminated the CPU involvement in
both data and control paths of the program execution.

Load balancing and GPU-initiated Communication. Gun-
rock [26] is a graph analytics library that can execute on multi-
GPUs. However, it does not fully utilize the GPU-sided communi-
cation. Additionally, it follows the BSP model, which suffers from
intra-GPU load imbalance due to device-wide synchronization of
unevenly occupied threads. Groute [6] however, uses the NVLink
interconnect and takes load balancing one step further by introduc-
ing asynchronous execution with the help of the work queue. Yet,
Groute still uses CPU resources for scheduling and initiating the
GPU-to-GPU communications. This CPU involvement is potentially
the most important bottleneck of the model. ATOS [8] removes
this bottleneck from the model, introducing in-kernel communi-
cation. Similarly to Groute [6] and Whippletree [19], it features a
work queue for better load balancing. For multi-GPU execution [8],
ATOS uses intra-kernel communication over NVLink. It does not
require any CPU involvement, since a device directly pushes work
to remote devices.
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GPU-to-CPU callbacks. In [20], for the first time, authors called
for the introduction of GPU-to-CPU callbacks and motivated addi-
tion of such a feature to GPU devices with several use-cases such
as debugging. Their solution is based on CPU polling to wait for
the notifications. Moreover, there have been techniques that enable
GPUs to leverage OS system calls in CPUs to perform filesystem
1/O operations [7, 17] and to create socket/channel for network-
ing [18]. Vesely et al. [3, 25] developed a framework for GPU-sided
system call invocation that uses POSIX APIs. It enables GPUs to
send interrupts to invoke OS kernel-level services from CPUs. By
leveraging interrupts, this approach does not keep CPU threads
busy-waiting for notifications from GPUs. Sun et al. [21] extended
AMD ROC platform to allow GPUs to assign computation tasks to
CPUs. Tomoutzoglou et al. [22] proposes a hardware, packet-based
communication scheme that allows GPUs to notify CPUs and of-
fload jobs to CPUs at user space without involving costly system
calls.

Existing work on CPU callbacks and system calls lacks a crucial
capability: the initiation of new kernels from one GPU to others.
While CUDA dynamic parallelism enables such launches within the
same device, it is limited to a subset of active threads. Additionally,
GPUs cannot utilize additional devices beyond those already in use.
Enabling a GPU device to notify a CPU for launching kernels on
other devices allows unused GPUs to remain inactive until needed.
Moreover, utilizing interrupts for CPU notifications from GPUs
eliminates the need for CPU polling, improving efficiency.

3 METHODOLOGY

Figure 1 shows the overall workflow of the proposed GPU offloading
model. It starts with an example workload in an irregular appli-
cation. Stage a refers to the phase with low workload and only
one device in use. During stage b the workload increases thus can
be split between all the available devices. In stage c, the workload
shrinks thus all the devices delegate the remaining work to a smaller
number of GPUs. Although the example shows a pattern with a sin-
gle high workload section, some applications can have multiple or
be completely unpredictable. In such cases stage c¢ can be followed
by stage b repeatedly until the execution is completed. The dashed
line between the stages represents a decision-making process.

To start execution on a single device, all the application data
has to be available, as shown in Figure 1B. It ensures that while
the workload is not enough to occupy the whole GPU, the com-
munication costs are reduced, as the work items are not yet being
shared with other devices; all work items are processed by GPUO0 as
shown in Figure 1C a. If the workload exceeds a certain threshold,
it would mean that usage of additional GPUs would improve the
overall running time at the cost of inter-device communication.
The threshold depends on a specific scenario. In our case, we use a
fixed threshold, so that when a device has more work items than
maximum concurrent threads, the threshold is exceeded. As shown
in Figure 1C b, every GPU sends work items to their corresponding
oweners’ work queues. In case, workload shrinks again (Figure 1C
¢), queues of inactive devices are emptied, all remaining items are
sent to GPUO.
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Figure 1: Workflow of the proposed model.
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3.1 Offloading for Discrete Kernels

The basic scenario, which allows dynamic allocation of GPU re-
sources is when every algorithm iteration corresponds to a separate
kernel launch. This so-called discrete kernel model is used to be a
standard mode of execution. This model assumes that in every al-
gorithm iteration, the CPU would launch a GPU kernel that only
handles the computation, followed by a data movement step, also
initiated on the CPU side. The fact that the application execution
path goes through the CPU after each iteration, despite the over-
heads, can be used in irregular applications for efficient allocation
of GPU resources. Typically, in a graph algorithm the workload of
the next iteration is known after a current one has been completed.
Therefore, the exact amount of needed threads can be allocated by
the CPU for each discrete kernel launch.

We can extend the resource allocation approach to consider the
number of GPUs in use. For that, each GPU would need to have
the partitions for each potential GPU count that can be used in
memory. The CPU can then determine, based on the workload, the
number of GPUs to be used and instruct the devices to employ the
corresponding data partitioning. Although this incurs a memory
cost for the allocation, it allows fine-tuning the number of GPUs
in use at every iteration, similar to adjusting the number of GPU
threads.

3.2 Offloading for Persistent Kernels

A persistent kernel is long running kernel where the iteration loop
is moved to the device code from the host code. Unlike the discrete
kernels, the persistent kernels are challenging due to the absence of
direct device-initiated invocation of GPU kernels on peer devices.
We therefore use CPU-initiated kernel invocation through signaling,
while attempting to keep CPU usage minimized. Because of the
differences in hardware and the corresponding instruction set, the
signaling mechanism varies.

Regardless of the underlying mechanism, the idea behind this
approach is to signal the CPU to employ additional devices. We
allocate an MPI process for each GPU device used. As shown in
Figure 1D, in I the device detects it is saturated thus it needs to
offload some of its workload to its peers. In 2, it then switches to
split partitioning to start filling up other devices’ queues and issues
a callback to the CPU 3. After a callback has been received by the
host 4, there is an MPI signaling step 5 to inform other devices
about the start of the execution, which can be avoided if all the
devices are managed within a single process. Step 6 launches the
kernels on other devices.

Reducing the number of devices in use (Figure 1E) requires all
devices to reach a low-workload phase. This step does not require
CPU involvement, because now it is the GPUs’ responsibility to
coordinate the shrinking. When underutilization is detected 1, de-
vices notify GPUO 2 by updating a flag to make a common decision
3 to send all the remaining work items to GPU0. Without a coordi-
nated decision, it is possible that a device would send work items
to an already terminated device. Therefore data partitioning needs
to be changed on all devices, starting with GPUO 4, followed by
other devices afterwards 5. Potentially, a model with completely
dynamic number of devices is possible, but would require either
higher memory consumption to store additional data on devices
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or communication overheads to send such data in case the owner
decides to terminate. Such costs may be tolerable only in compute-
intensive applications.

3.3 GPU-to-CPU Callback

We devise three callback mechanisms to facilitate inter-GPU com-
putation offloading as illustrated in Figure 2. While the first callback
mechanism could only work on discrete kernels, the second and
third callback mechanisms could work on both discrete and persis-
tent kernels. In the first mechanism, referred as event-based callback
(Figure 2A), a GPU stream records an event, i.e. a CUDA event or
a HIP event, after its kernel finishes running. By recording this
event, the stream causes the other GPU streams that wait on the
event to launch additional kernels to unused GPUs. In the second
mechanism, referred as busy wait-based callback (Figure 2B), a CPU
thread busy-waits on a globally accessible memory region until
a GPU writes a signaling value to the address being busy-waited
[20]. The third mechanism, named as interrupt-based callback (Fig-
ure 2C), leverages interrupt delivery from device to host on AMD
GPUs. However, such a functionality is not available to end-users
on Nvidia GPUs. Even though we utilize these callback mechanisms
for CPU to launch new kernels on other devices, these mechanisms
are general and can be used to signal the host to do other tasks.

Event-based callbacks. In Nvidia and AMD GPUs, we imple-
ment event-based callbacks that work on discrete kernels. These
callbacks leverage cudaStreamWaitEvent in Nvidia GPUs and
hipStreamWaitEvent in AMD GPUs. These functions work in
conjunction with cudaEventRecord and hipEventRecord, respec-
tively, to enable a discrete kernel to launch kernels to other GPU
devices by having its stream record an event after its completion.

Busy-wait callbacks. This callback employs busy-wait in CPUs
by leveraging CUDA and HIP’s zero-copy memory to detect modi-
fication of flags in persistent kernels. After launching a kernel, a
CPU thread busy-waits on a flag. Once the kernel changes the value
of the flag using a zero-copied pointer of the flag, the CPU thread
detects the change and launches kernels to other GPUs.

This callback mechanism, however, keeps CPU resources busy
by polling on a shared memory region to wait for notifications
from GPUs. Yet, due to the lack of any alternative solutions, we
can use only this mechanism on persistent kernels running on
Nvidia GPUs. One possible alternative for busy wait in CPUs is
by having CUDA streams running on CPUs wait on an update by
GPUs to a memory location by using cuStreamWaitValue32 or
cuStreamWaitValue64. After the memory location is updated, the
streams can launch kernels to unused GPUs. Though the mechanism
is similar to busy-wait by CPU threads, it might incur lower latency
due to CUDA’s built-in support. However, we cannot implement
this mechanism because the support for stream memory operation
is disabled by default and there is a lack of documentation on how
to use it.

Interrupt-based callbacks. We implement this type of call-
backs only in AMD GPUs since AMD has a documented instruction,
i.e. s_sendmsg, that allows GPUs to send interrupts to CPUs. After
receiving an interrupt from a GPU, the interrupt handler in the
OS kernel sends a signal to a CPU thread in the user space. Once
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receiving the signal, the CPU thread runs a signal handler that
launches computation kernels to other idle GPU devices.

4 EVALUATION

This section evaluates the performance of the different call-back
mechanisms and proposed GPU-initiated resource allocation on
BFS. Table 1 shows the list of graphs used in the evaluation. All
graphs are randomly partitioned.

Experiments were conducted on two machines. First machine
has 4 V100 NVIDIA GPUs connected to a 2-socket Intel Xeon Gold
6148 CPUs with 20 physical cores/socket. The other machine has
8 A100 NVIDIA GPUs connected to a 2-socket AMD EPYC 7742
CPUs with 64 physical cores/socket. For callback latency, we also
carried out experiments in a machine with 2 AMD Instinct MI100
GPUs, which are connected to a 2-socket AMD EPYC 7313 CPUs
with 16 logical cores/socket. The measurements are performed five
times on all setups.

4.1 Callback Latency

We compare the overhead of callback implementations against
a baseline that performs a cudaDeviceSynchronize call after a
discrete GPU kernel launch. We label our baseline as CPU-initiated.
The GPU kernels of the CPU-initiated and event-based schemes in
this experiment are empty kernels, while the kernel of the CPU busy-
wait scheme does nothing other than updating the zero-copied flag
that is busy-waited by a CPU thread. For CPU-initiated, we measure
the latency from the moment the kernel is launched until after the
stream synchronization finishes. For event-based, the latency is from
the moment the kernel is launched in stream 0 until the moment
cudaStreamWaitEvent in stream 1 detects the event recorded in
stream 0. For CPU busy-wait, the latency is from kernel launch until
the moment an update to the zero-copied flag is detected by the
busy-waiting CPU thread. The GPU kernel in the interrupt-based
callback code does nothing other than sending a software interrupt
to the OS by using the s_sendmsg[2] instruction. We measure the
latency of the interrupt-based callback code from the moment the
kernel is launched until the moment the OS signal sent by the
interrupt handler is detected by the CPU thread.

Figure 4 displays the latency of the callback schemes on NVIDIA
A100 and V100 GPUs. CPU busy-wait and event-based mechanisms
outperform the baseline consistently across different GPUs. Fur-
thermore, CPU busy-wait is slower than the event-based callback.
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Figure 4 also presents the latency of our callback implementations
on AMD MI100 GPUs. All of the three callback mechanisms out-
perform the baseline. Among three mechanisms, interrupt-based
callback incurs the highest latency, potentially caused by the ex-
tra time lag between interrupt delivery and interrupt handling, in
addition to the time lag between signal delivery in the interrupt
handler and the signal handling by the host thread. Differently
than the results from the NVIDIA GPUs, event-based callback has
slightly higher latency than CPU busy-wait. Additionally, a lower
callback latency can be observed on an older generation NVIDIA
V100. As previous research indicates [29], in NVIDIA V100 the
cudaDeviceSynchronize latency has increased compared to the
older NVIDIA P100. This trend seems to continue with the newer
generation NVIDIA A100, likely due to the increasing number of
SMs.
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4.2 BFS Performance

We compare our BFS implementation that uses GPU-initiated of-
floading against ATOS [9]. BFS in ATOS is a state-of-the-art multi-
GPU implementation that outperforms the prior-art from Groute[5]
and Gunrock [26]. Our implementation is also based on ATOS but
capable of dynamically adjusting the devices in use through call-
backs to offload work to other GPUs. Since interrupts are not openly
available on Nvidia GPUs, we choose to use the CPU busy-waiting
callback. In our evaluation we consider two metrics: performance
and resource utilization. Performance will be indicated by the time to
solution (when all the GPUs complete their respective kernels). The
resource utilization metric, reported as a percentage, is reflected
by the total GPU time of all the devices in a system. The second
metric is an indication of improvement in energy usage.

We provide the experiment results for input graphs using 2, 3,
and 4 GPUs for discrete and persistent kernels on Figure 5 and
Figure 6, respectively. The performance of baseline is shown as
a black triangle. In discrete kernels, dynamic allocation of GPUs
during kernel invocation yields better performance in 14 out of
18 data points, with an average 7.3% improvement. The resource
efficiency is improved in 16 out of 18 data points, with an average
35% improvement.

In persistent kernels, dynamic allocation of GPUs during kernel
invocation yields better performance in 9 out of 13 data points,
with an average 15.7% improvement. The resource utilization is
improved in 8 out of 13 data points, with an average 4.1%. Note
that the unreported result for certain graphs are due to ATOS (base-
line) not being able to produce correct solution. While in discrete
kernels a device can terminate easily after each BFS iteration, in
persistent kernel resource utilization can be worse due to the over-
head introduced by the need to wait for the NVSHMEM operations
to complete. Overall, results for both figures show that dynamic
allocation of GPUs works best in scenarios where the high work-
load phase is characterized by a large amount of parallelism, while
the low-workload phase spans a large amount of iterations. An
example is shown on Figure 4, where webbase-2001 is the graph
that most clearly manifests both of the required features.

5 CONCLUSION

We have implemented device-sided work offloading in multi-GPU
systems for both discrete and persistent kernels. In contrast to ex-
isting approaches, our scheme dynamically allocates computational
resources by adding or removing GPU devices as needed. We have
explored and assessed three distinct callback mechanisms for noti-
fying the CPU to launch kernels on additional devices. On AMD
GPUs, incorporating additional devices is achievable through an
interrupt-based callback, effectively eliminating busy-waiting from
the offloading process. Furthermore, multi-GPU systems can gain
both performance and improved resource utilization advantages
from dynamically assignable devices in both discrete and persis-
tent kernels, as demonstrated in the case of BFS. However, the
performance improvement is limited for BFS because it exhibits an
extreme case with very low computational work. We anticipate that
other dynamic algorithms with higher compute intensity would
benefit more from dynamic resource allocation. Moreover, enabling
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GPUs to seamlessly launch kernels on other devices could mitigate
some of the callback overheads.
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