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Abstract

Executing task graphs on multi-GPU systems presents chal-
lenges typically managed by CPU-side runtimes, which han-
dle memory management, track dependencies, and balance
load. However, the interplay of runtime components, CPU-
driven kernel initialization, and dynamic task graph construc-
tion creates significant overhead. For static graphs, recent
advancements have enabled GPU-side execution, demon-
strating substantial performance gains in single-GPU sce-
narios. However, multi-GPU execution still lags behind in
both usability and performance. In particular, no GPU-side
solution exists for executing task graphs on multiple nodes.

In this work, we introduce Mustard, a multi-GPU execu-
tion model that shifts execution of static task graphs entirely
to the devices, drastically reducing overhead. Mustard of-
fers a clean solution for executing CUDA graphs across multi-
ple GPUs on multiple nodes without requiring modifications
to GPU kernel code or the adoption of new runtime mech-
anisms or APIs. By transforming the task graph, Mustard
enables precise tracking of task dependencies and load bal-
ancing directly on the GPU, eliminating the need for host
CPU involvement.We evaluate our approach using generated
graphs, as well as LU and Cholesky decomposition graphs.
In a multi-node scenario with 64 GPUs, Mustard achieves
an average 5.83× speedup over the linear algebra library
SLATE. On a single node, compared to the best-performing
baseline, Mustard delivers an average 1.66× speedup for LU
and 1.29× for Cholesky.
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1 Introduction

GPUs have become integral to both the AI and HPC land-
scapes, gaining numerous hardware and software features
that enhance their autonomy and control over program ex-
ecution [12, 22]. Unlike traditional methods that depend
on CPU involvement for communication, synchronization,
and other operations, ongoing developments [38] aim to
empower GPUs for reduced latency and improved flexibil-
ity. Notably, direct device-initiated data transfers are now
feasible via the NVLink interconnect, guided by GPUDirect
tools [30]. In-kernel synchronization is achievable for all
participating thread blocks with the introduction of the Co-
operative Groups. Additional efforts extend GPU capabilities
by enabling system calls [39], networking [1, 28], and storage
access [31, 32] directly from the GPU side, eliminating CPU
involvement in many operations.
Despite the advancements in the GPU technology, multi-

GPU programming is complex due to the need for intricate
workload decomposition, scheduling, and orchestration. One
commonly used way of representing the workload for multi-
GPUs is task graphs. Vertices (i.e. nodes) of a task graph
represent computations and edges indicate the dependencies
between them. Typically, runtime systems [4, 9, 27] are used
for scheduling of task graphs across multiple GPUs. Runtime
systems schedule tasks on the CPU and then offload them
to GPUs, making decisions based on factors like current
workload, partitioning strategies, and performance models.
Sophisticated schemesmay lead to amore balancedworkload
distribution but can be prone to overheads from scheduling,
kernel launches, inter-process communication, and other
runtime system components [14, 18].

We introduceMustard, a model for executing task graphs
on multi-GPU systems, where the CPU is used solely for task
graph initialization. Mustard is the first multi-node GPU-
side execution model for partitioned static task graphs. It
dynamically schedules graph vertices by tracking launched
GPU resources, managing data transfers, balancing work-
loads across devices, and synchronously tracking task depen-
dencies — all on the device side. Leveraging CUDA Graphs in
its implementation reduces overhead while preserving ease
of use for developers. Following a model introduced in this
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Figure 1: Possible execution timelines of various ap-

proaches. (1) Runtime system can use performance

modeling or dynamic task allocation to allocate Task

7 on an idle GPU, but may suffer from overheads. (2)

Multi-GPU CUDA Graph launch can remove the over-

heads, but cannot dynamically allocate tasks, result-

ing in Task 7 scheduled on GPU 0. (3) The proposed

approach performs online scheduling with low over-

heads.

paper, a single-GPU CUDA Graph can be executed across
multiple GPUs without requiring kernel code modifications.

The contributions of this work are outlined as follows:
• The first device-side multi-GPU execution model for
multi-node systems.

• Implementation of low-overhead dynamic scheduling
of tasks and load balancing without CPU involvement.

• Elimination of the need for a performancemodel, heuris-
tics, manual intervention, or familiarity with specific
runtime APIs or DSLs.

• Demonstration of LU and Cholesky decomposition as
example use cases, along with integration of cuBLAS
and cuSOLVER into the proposed model.

• Performance evaluation against the StarPU runtime
[4], SLATE [17], single- and multi-GPU cuSOLVER
implementations, and single-GPU CUDA Graph. In
all cases, Mustard outperforms StarPU and SLATE
while providing performance that is better or compa-
rable to NVIDIA’s cuSOLVER. In the multi-node case,
Mustard reaches performance close to the hardware’s
theoretical peak even on smaller matrices.

Mustard demonstrates that scheduling of static task graphs
in multi-GPU systems can be done on the device, and de-
fines to what extent the runtime components could be imple-
mented on the GPU. We argue that removing the CPU from
the critical path of the task graph scheduling and execution

can achieve better performance, while reducing the afore-
mentioned overheads. Finally, even though our implementa-
tion of Mustard is based on CUDA Graphs, its concepts are
directly applicable to AMD hipGraph.

2 Motivation and Related Work

This work focuses on static task graphs. Although dynamic
graphs offer more flexibility by allowing changes in graph
structure, most scientific, linear algebra and graph analytics
applications can be expressed in form of a static graph. Unlike
dynamically constructed graphs, static graphs can be set up
before execution and can be reused, further reducing runtime
overheads.
Current multi-GPU scheduling approaches suffer from

high overhead or require manual effort to orchestrate com-
munication and partition the task graph. Namely, manag-
ing GPUs and launching kernels from the CPU induce high
overhead. To mitigate some of these overheads, NVIDIA de-
veloped CUDA Graphs [29] (and similarly AMD developed
hipGraph [2]), which facilitates the creation and execution
of task graphs on GPUs. In this model, GPU kernels, data
transfers, and other tasks are represented as vertices (nodes)
of the graph. Once a GPU graph is created, it can be reused,
reducing kernel launch overhead. While in a single-GPU set-
ting, task graphs can be efficiently scheduled and executed by
the CUDA (or RoCM) runtime alone, multi-GPU execution is
more complex. It requires the programmer to allocate tasks
and orchestrate data movement between devices. Although
the issue of manual orchestration has been addressed in [3],
CUDA Graphs-based approaches only work within a single
node.

Figure 1 shows three execution timelines of different sched-
uling scenarios for the same task graph. While the top time-
line shows one of the possible executions by a runtime sys-
tem with overheads shown in dark gray, the second timeline
shows a possible CUDA Graph execution designed by a pro-
grammer (who lacks runtime knowledge of task lengths),
leading to suboptimal scheduling because of placing Task 7
on GPU0. The bottom timeline shows the proposed approach
that combines the low overhead of CUDAGraphs with online
scheduling, which results in the best overall runtime.
Although there are existing methods for multi-GPU ex-

ecution of graph algorithms in multi-node scenarios, such
as those in [8, 24, 36], these approaches focus on graph ap-
plications specifically and differ from task graph execution.
In graph algorithms, a single fused kernel can often suffice,
requiring only data management for multi-node execution.
In contrast, task graph scheduling involves the orchestration
of entire kernels.
Next, we provide background information on CPU-man-

aged runtimes, CUDA Graphs, and other existing solutions.
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Table 1: Overview of the existing task graph scheduling approaches. ✽new tasks can be submitted, but the task

types cannot be changed. ✣requires additional steps for usage: SLATE relies on OpenMP tasking, multi-GPU CUDA

Graphs need a partitioner, Juggler requires the program rewritten in a persistent kernel fashion.

Approach Multi-
GPU

Multi-
node

CPU-
free

Kernel launch
overhead

Runtime
overhead

Dynamic load
balancing

No need for
perf. model

Dynamic
graphs

Static
graphs

No custom
API

StarPU [4] ✓ ✓ ✗ high medium ✓ ✗ ✓ ✗ ✗

PaRSEC [9] ✓ ✓ ✗ high medium ✓ ✓ ✓ ✓ ✗

Legion [5] ✓ ✓ ✗ high high ✓ ✓ ✓ ✗ ✗

OpenMP (SLATE [17]) ✓ ✓ ✗ high medium ✓ ✓ ✓ ✗ ✣

CUDA Graphs ✗ ✗ ✓ small small ✗ NA ✗ ✓ ✓

partitioned CUDA Graphs ✓ ✗ ✓ small small ✗ NA ✗ ✓ ✣

Juggler (Megakernel) [7] ✗ ✗ ✓ none small NA NA ✽ ✗ ✣

Mustard (ours) ✓ ✓ ✓ small small ✓ ✓ ✗ ✓ ✓

We discuss their pros and cons before introducing our ap-
proach. Table 1 presents a comparative overview of the solu-
tions and their examples from literature.

2.1 CPU-managed Runtimes

The existing approaches to directed acyclic graph (DAG) ex-
ecution on GPUs usually rely on CPU orchestration. For dy-
namic scheduling of tasks they use CPU-side queues for each
device, offloading tasks to GPUs upon availability and/or re-
quest. While StarPU [4] and XKaapi [18] can take advantage
of a performance model, PaRSEC [9] and Legion [5] aim
to leverage knowledge about the data access patterns to
improve parallelism and data reuse. All of the mentioned
runtimes can leverage work stealing for dynamic load balanc-
ing, although in Legion such decisions have to be triggered
by the user.
These CPU-managed runtimes are capable of employing

continuous dynamic scheduling, leading to a balanced allo-
cation and reduced time-to-solution as shown in Figure 1B-1.
However, in addition to the programming burden of learning
new APIs, the overhead of kernel launch and other runtime
components can be high. As previously shown [21], StarPU
is very efficient in terms of scheduling both parallel and se-
rial task chains on the CPU. Despite this fact, Section 5.1.2
shows that on the GPU it can be up to 13x slower compared
to CUDA Graphs.
Moreover, for balanced task allocation runtime systems

may rely on performance models or heuristics considering
metrics such as the potential running time of each task or
size of the accessed data tiles, the current computational load
of devices, communication overhead, or a combination of
these factors. Additionally, the mentioned runtimes rely on
dynamic graph construction with the exception of PaRSEC,
which allows for both static and dynamic graph construction.

2.2 CUDA Graphs

Starting from CUDA 10, a new task graph execution model
named CUDA Graphs was made available, allowing for low-
overhead static scheduling of task graphs. This model enables
pre-scheduling of kernels and formulating dependencies be-
tween them in form of a task graph, which can be executed
entirely on the GPU without engaging the host. In a single-
GPU setting scheduling of the graph’s kernels, as well as
the individual blocks and warps is done automatically. In
a multi-GPU setting, however, load balancing and manage-
ment of inter-GPU communications between multiple de-
vices remains contingent on the programmer’s decisions and
is only possible within a single node. For a CUDA Graph to
be run on a multi-GPU system, when the graph is being
constructed, the cudaSetDevice function should be called
to assign a newly added vertex in the graph to its intended
device. Additionally, cudaMemcpy vertices need to be manu-
ally inserted to perform device-to-device data transfers when
needed to satisfy inter-device data dependencies.

As shown in Figure 1B with the middle timeline, the over-
head of dependency tracking and kernel launches in this sce-
nario is minimized thanks to CUDA Graphs, but multi-GPU
execution is limited to a single node and requires additional
static task-to-device allocation and data transfers. As Figure
1B depicts with Task 7 in pink scheduled on GPU 0, in such
cases optimal scheduling may be difficult to achieve, since
the execution time of graph nodes is unclear in advance and
there is no runtime inter-GPU load balancing mechanism
in CUDA Graphs. If Task 7 could be scheduled on GPU 2
instead, an optimal low-overhead execution timeline can be
achieved.

2.3 Persistent Megakernels

Previous research on CPU-free task graph execution [7] uses
persistent megakernels to address the limitation of GPUs not
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being able to launch kernels. The approach involves launch-
ing a single large persistent kernel across all available SMs,
containing code required for each task type that can be ex-
ecuted, split by the conditional operators. The GPU then
uses warps or thread blocks as workers, distributing tasks
through mechanisms like queues. While some applications
benefit from this method [6] and efficient caching techniques
[41], more complex applications with diverse tasks, depen-
dencies, and multiple GPUs still rely on CPU-side scheduling
[11]. Some examples of the megakernel approach include
Softshell [33], Whippletree [34], and Juggler [7]. However, to
our knowledge, no multi-GPU megakernel implementation
exists. In addition, they inherited limitations of persistent
kernels, such as high register pressure [12], thread diver-
gence [35], and lack of hardware scheduler support [19].

3 Mustard

Mustard aims to address the current limitations of multi-
GPU scheduling of static graphs by introducing an inter-
node execution mechanism and demonstrate the viability
of moving runtime components to the device. We suggest
device-side solutions for dependency tracking, synchroniza-
tion and data transfers, elaborated in Section 3.1. While the
scope of this work involves only static graphs, we propose
mechanisms for dynamic scheduling of static graphs in Sec-
tion 3.2, which involves runtime decision making for work
distribution, paving the way for fully GPU-side runtime sys-
tems.

3.1 Task Graph Execution with Static

Scheduling

In a static scheduling scenario, partitioning of the graph
between GPUs is known in advance. This scenario does
not require full-fledged runtime systems with dynamic task
placement and load balancing features. The main challenge
of static scheduling is dependency tracking. Communication
has to be managed too, but it is less challenging, since in the
static scenario the participating devices for data transfers
are known in advance. While both the dependency track-
ing and communication can be handled by CUDA Graphs
in a single-node case, or can be managed by the CPU, such
solutions are prone to overheads mentioned in Section 2.
Additionally, Mustard helps reducing memory footprint of
CUDA Graphs achieved by splitting the task graph between
the devices.
The execution of CUDA Graphs across multiple nodes

introduces additional complexities. While CUDA Graphs
allow manual allocation of graph vertices, this is limited to
devices within the same host. To overcome these limitations
and reduce overhead, we propose a device-side method that
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Figure 2: Enriched static graph: dependency tracking

and data transfers on the GPU side in a cudaGraph for-

mat. The graph and resulting timeline follow Figure. 1

allows for multi-GPU dependency tracking, and is applicable
to multi-node systems.

3.1.1 Device-Side Synchronization and Graph Enrichment.
Dependency updates and data transfers require a synchro-
nized effort in multi-GPU systems. Consider, for instance,
a graph vertex with a compute kernel spanning all thread
blocks. To update the dependencies upon its completion, it is
crucial to ensure that all threads in all blocks have concluded
the kernel execution. However, kernel-level synchronization
is impossible without CUDA Cooperative Groups, requiring
cudaLaunchCooperativeKernelwrapper for kernel launch,
with a limitation of the maximum assignable thread count.
Calling cudaDeviceSynchronize() is not an option either,
since it must be invoked on the host side. While static sched-
uling requires GPU-wide synchronization, dynamic runtime
decisions rely on synchronization even more, since it is also
required for occupancy tracking, distribution and scheduling
of tasks, as will be discussed in Section 3.2.

To tackle the challenges mentioned above, Mustard uses
a concept we refer to as graph enrichment. The idea behind
graph enrichment is to incorporate all the functionality re-
quired for graph scheduling into the graph itself. This way,
dependency updates, occupancy tracking and data transfers
can occur within the added vertices of the enriched graph.
Figure 2 shows an example of an enriched version of the
graph presented in Figure 1.
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3.1.2 Dependency Tracking. While the local dependencies
can be tracked efficiently by CUDA Graphs, global dependen-
cies are either prone to overhead or, in case of multi-node
execution, nonviable. With the graph enrichment method
at hand, dependency tracking can be done in separate ver-
tices of the graph. This way, whenever there is a remote
dependency, i.e. a child vertex is on a different GPU, it can be
decremented by inserting a new vertex between the parent
and a child. Since the child will be executed on a remote GPU,
it needs to be able to poll from the same memory address that
is being decremented by the parent. To ensure proper order-
ing of decrements, atomic memory updates are required. For
atomic updates to span between compute nodes, we leverage
NVSHMEM atomics.

Figure 2 shows the injection of dependency update vertices
labeled as DU, which have a matching dependency wait
(DW) vertex on a remote GPU. Note that even if there may
be multiple incoming DU vertices, only one DW vertex is
needed on the receiver side.

3.1.3 Data Transfers for Static Scheduling. The source and
destination devices are known for all the data transfers when
the workload is statically scheduled. As such, using the
source and destination IDs, device-side communication can
be issued whenever there is a data dependency between tasks
allocated to different GPUs. The data transfers can then be
added to the graph as DT vertices, as per Figure 2. While,
within a node, Mustard uses cudaMemcpy calls, in a multi-
node case, it uses NVSHMEM instead to perform the data
transfers.

3.1.4 Example with a Multi-node LU Decomposition with
CUDA Graphs. To better illustrate the approach, Figure 3
provides a simple example. It shows a block LU decomposi-
tion graph with 3x3 tiles on a system with 2 GPUs, each on a
separate compute node. The graph is partitioned according
to the round-robin columnwise data distribution scheme,
same partitioning scheme that is used by
cuSolverMg and by Mustard in Section 5. The leftmost part
shows the first iteration of the algorithm, with the second
iteration behind on the data distribution scheme in muted
colors. The middle and right parts depict the graph partitions
created by Mustard for GPU0 and GPU1, correspondingly.
All the local dependencies in the graph are handled by

CUDA Graphs, while internode dependencies are tracked
by Mustard. Whenever the destination of an outgoing de-
pendency belongs to another GPU, a dependency update
(DU ) vertex is inserted as shown in the middle part of the
figure with GPU1. Meanwhile, the incoming dependencies
from peer GPUs are preceded with a dependency wait (DW )
vertex as shown with the right part of the figure with GPU0.
TheDU vertex contains an atomic NVSHMEMupdate, which
is caught inside a busy-waiting DW vertex. Each DW only

Algorithm 1 Graph Enrichment for Dynamic Scheduling
1: function Mustard(Graph 𝑔)
2: 𝑆 = getSubgraphs(𝑔) ⊲ partition into subgraphs S
3: 𝐷 = addDependencies(𝑆) ⊲ creates dependency array D
4: addCommunicationVertices(𝑆) ⊲ handles data transfers
5: 𝑂 = addOccupancyUpdates(𝑆) ⊲ O stands for current load info
6: 𝑞 = initializeQueue(𝐷 , 𝑑𝑒𝑣𝑖𝑐𝑒)
7: for device = 0 to GPU_COUNT do

8: initializeSubgraphs(𝑆 , 𝑑𝑒𝑣𝑖𝑐𝑒)
9: scheduler(𝑞, 𝑆 ,𝑂 , 𝑑𝑒𝑣𝑖𝑐𝑒) ⊲ runs on the GPU
10: end for

11: end function

occupies a single GPU thread, ensuring conservation of com-
pute resources.

3.2 Task Graph Execution with Dynamic

Scheduling

Apart from multi-node execution of static graphs, our multi-
GPU execution model attempts to address the limitations
of intra-node scheduling. Particularly, it has been impos-
sible to dynamically schedule work on a multi-GPU node
without CPU involvement. Mustard proposes a model for
device-side task distribution with load balancing and mini-
mized overheads. The runtime overheads of queuing, depen-
dency tracking and kernel launch are reduced by merging
the vertices into subgraphs, letting the hardware scheduler
to handle the intra-device scheduling of the subgraph ver-
tices. While the graph remains static, decisions regarding
task distribution within the system are dynamically made
based on the current resource usage. This approach results
in a more informed runtime that facilitates load balancing
across devices.
To our knowledge, apart from the methods mentioned

in Table 1, the only work attempting to move the runtime
functionality completely to the device side that by Choi et
al. [13]. However, it is incapable of scheduling various tasks
required by the execution of DAGs and does not maintain re-
source usage information. To have a more complete runtime
functionality for running multi-GPU task graphs entirely on
the device side these challenges must be addressed: (i) En-
abling device-side kernel launches, (ii) Achieving device-side
synchronization, (iii) Tracking task dependencies to ensure
correct execution, (iv) Managing memory and data transfers
between devices, (v) Monitoring device occupancy for load
balancing, and (vi) Efficiently distributing tasks among de-
vices. In this section, we will explain how Mustard tackles
these challenges and outline the design of its components.

3.2.1 Graph Enrichment for Dynamic Scheduling. As dis-
cussed in Section 3.1.1 for synchronization we employ task
graph enrichment, which uses the implicit barriers between
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Figure 3: Example of partitioned LU decomposition graph with 3x3 tiling and 2 GPUs on 2 separate compute

nodes. Round-robin column-wise partitioning of data is used. Additional vertices are inserted into the graph for

inter-node dependency resolution, making it feasible for multi-node execution.

vertices and adds functionality required for task graph exe-
cution into the graph itself. Before scheduling the task graph,
the initialization phase creates the enriched graph through
a series of steps as shown in Algorithm 1. Line 2 identifies
the serial or tightly connected sections of the graph by par-
titioning it into subgraphs. Line 3 initializes the outgoing
dependency counts for each subgraph and adds dependency
update vertices whenever there is an outgoing dependency to
a task in another subgraph (Section 3.1.2). The data pointers
are also recorded inside these vertices. Data is read within
communication vertices created on Line 4, enabling inter-
device communication (Section 3.2.3). Line 5 adds vertices
to the graph to update occupancy information on each de-
vice (Section 3.2.4). Line 6 initializes the task queue (Section
3.2.5), and finally, Line 8 initializes all subgraphs on each
device. The enriched graph can then be executed by a simple
GPU-side scheduler, as discussed in Section 3.2.6.

Figure 4 shows an example of enriched task graph, which
has additional vertices inserted into the task graph from
Figure 1. The vertices updating dependencies, data transfers
and tracking device occupancy are added. Moreover, tasks
are merged into separate schedulable units called subgraphs,
labeled from A to E.

3.2.2 Device-side Kernel Launch. Themain obstacle for GPU-
side task scheduling is the lack of kernel launch capability on
the device. Existing methods of device-side kernel initiation
do not exhibit the performance and flexibility of CPU-side
kernel launch. For instance, a CUDA feature called dynamic
parallelism allows the programmer to split a portion of the
parent kernel’s resources to execute a child kernel. However
this method suffers from multiple sources of overhead [10],
proved to be suitable only for applications that follow the
divide-and-conquer paradigm [23] and was later deprecated,
making its way back only with CUDA version 12. Another po-
tential solution could be avoiding kernel launches completely
by adopting the persistent kernel model [22] and following
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Figure 4: Enriched graph: dependency and occupancy

tracking on the GPU side in a cudaGraph format.

the megakernel approach. This would leave the resource allo-
cation and scheduling decisions between blocks and threads
inside each device to be managed by the runtime, and would
forbid the use of a hardware scheduler. Maintaining the inter-
device runtime components as well would exacerbate the
register pressure issue of persistent (mega)kernels.

Our approach uses the device-side CUDA Graph launch fea-
ture as a solution for launching device-side kernels and on-
line scheduling of kernels. This feature allows one to launch
a previously initialized cudaGraph from an already running
graph node (vertex). We can split graph vertices into sep-
arate cudaGraphs and schedule them from a long-running
device-side kernel, minimizing the kernel launch overheads.
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However, device-side graph launch comes with a limita-
tion, which requires the number of graphs submitted to a
device to be no more than 120. In cases with less than 120
vertices, every vertex can be considered a separate subgraph.
Otherwise, an acyclic partitioning such as dagP [20] is re-
quired.
After partitioning, subgraphs serve as work items to be

scheduled, as shown in Figure 4. The task graph vertices
shown in Figure 1 are coarsened into subgraphs labeled as
𝐴, 𝐵,𝐶, 𝐷 and 𝐸. The cut edges represent a dependency up-
date and potential inter-device communication, if the parent
and child subgraphs are placed on different devices. The in-
ternal dependencies inside a subgraph are handled by CUDA
Graphs and ensure minimal overhead.

3.2.3 Data Transfers and Memory Management for Dynamic
Scheduling. Unlike the execution method that partitions the
graph and schedules the memory allocations and data trans-
fers before starting the DAG execution, data transfers in
dynamic scheduling scenario are more difficult. Both the
memory allocation and device-to-device data transfer graph
nodes in CUDA require the IDs of the participating devices,
making it impossible to schedule such data transfers dy-
namically without reinitialization of the task graph by the
host. Yet, dynamic device-side data transfers are now pos-
sible thanks to device-initiated communication [1, 15, 30].
Using a preallocated buffer, devices can share the data be-
tween them inside the compute kernel graph nodes. This
approach, however, poses an additional challenge of buffer
management.

Memory allocation in the dynamic setting can be addressed
in the same way by adding __device__ cudaMalloc calls
into compute kernels. Memory allocated in such a manner,
however, can not be shared with the peer devices, making it
unsuitable for multi-GPU execution. Moreover, memory allo-
cation nodes can not be launched using the device-side graph
launch feature. As a solution, Ouroboros tool [40] provides
low-overhead device-side memory allocation. Due to the fact
that it uses cudaMalloc API to reserve all the available mem-
ory in the initialization stage, the memory pointers created
by Ouroboros can be shared with other devices, making it a
good fit for the multi-GPU scenario. The memory pointers
allocated using Ouroboros malloc calls can be announced
globally and used without the need to relaunch device ker-
nels. For example on Figure 4, the pointers are announced in
Step a○ and b○. Since both Task 1 and Task 4 are executed by
GPU 2, it already has access to the data generated by Task 1.
However, Task 0 is executed by GPU 1, so GPU 2 has to read
the data d○ from a remote address that has been announced
in step a○.

3.2.4 Occupancy Tracking and Load Balancing. Another re-
quirement for dynamic multi-GPU execution is to maintain

the resource availability information of the devices, which
allows to make load balancing decisions between the devices.
Traditionally, such information is being kept track of on the
CPU side. The host can keep track of the memory allocations,
the amount of launched threads and blocks, and other more
detailed resource usage data.

Mustard aims to maintain information about the amount
of memory being allocated and the number of CUDA threads
and blocks in use. Memory usage can be kept track of inside
the Ouroboros memcpy kernels. To keep track of the threads
and blocks launched, a single thread has to atomically update
a corresponding value. Since these updates need to be done
just before a compute kernel is launched and decremented
again after it finishes, we use the same method as the one
employed for dependency tracking: adding single-thread
kernels to the subgraphs. As a result, each kernel is enclosed
by two dependency update kernels, represented by vertices
with increment and decrement signs, as illustrated in Figure
4. In order to reduce the overhead of multiple additional
kernels, occupancy and dependency update kernels are fused
together.

When the occupancy information is available, it allows us
to maintain load balancing between the devices. Since there
are no locality mechanisms involved and there is a single
task pool, maintaining the occupancy of each device below
the maximum device occupancy (108 blocks of 1024 threads
each for NVIDIA A100, for example) is sufficient.

3.2.5 Task Distribution. For distribution of tasks between
the GPUs in the system we employ a device-side queue. The
task ID is retrieved from the queue and the pointers for the
required task data are obtained, so only two variables need
to be transferred. All the other data is broadcasted to each
device in advance. The tasks need to be synchronously en-
queued and dequeued to ensure consistency. While efficient
single-GPU parallel queues have been around for a while
[26, 35, 37], queueing for multi-GPU systems has been done
through the CPU, with an option of multiple threads manag-
ing queues for every device [4, 5, 9]. This limitation comes
mostly from the fact that such queues usually rely on CUDA
atomic memory reads and writes, which are consistent only
within a device’s own memory. Only recently, NVSHMEM
bridged the gap by introducing multi-GPU atomics. The
queue still has to reside on a single device, so that there is a
point of synchronization between the GPUs. Alternatively,
the queue can be partitioned between the devices, but the to-
tal number of nodes in a graph is typically not large enough
to require it and the limitation of the number of device-side
graph node launches makes this even less of a concern.

We reimplemented the Broker queue [26]withNVSHMEM
atomics, introducing GPU-side queues that are consistent
even in multi-GPU systems. Such queues allow us to share
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Algorithm 2 GPU-side Scheduler (CUDA kernel)
1: function scheduler(

Queue 𝑞, Subgraph[] 𝑆 , Occupancy[]𝑂 , int 𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝐷)
2: while q.itemsDequeued != S.size do ⊲ while tasks left
3: if !O[deviceID].isBusy() then ⊲ if this GPU is not busy
4: int sID = q.dequeue() ⊲ claim a task
5: cudaGraphLaunch((𝑆 [𝑠𝐼𝐷 ]) ⊲ device-side launch
6: end if

7: end while

8: end function

the workload between the devices in a fast manner without
the CPU involvement. In Mustard, queue updates happen
in dependency update kernels, shown in Figure 4 c○. When
the atomic decrement returns 0, the task is enqueued. The
dependency updates are done similarly to static approach in
Section 3.1, but with no need to use busy-waiting vertices. In-
stead, a busy-waiting scheduler launches tasks from a shared
queue.

3.2.6 Scheduler. Algorithm 2 shows the simple GPU-side
scheduler employed by Mustard. It takes the task queue,
subgraphs, occupancy and device ID as input and claims
available jobs from the queue and executes themusing device-
side CUDA Graph launch. To better illustrate how the sched-
uler works, let us consider the example of the task graph
from Figure 1, assuming the initialization is completed and
subgraphs are formed as depicted on Figure 4. Subgraph ver-
tices will be executed with no need for runtime control, as
they are fully managed by CUDA Graphs. With the depen-
dency update vertices inserted, whenever a task is completed
it will automatically decrement the dependency value of the
child subgraph and enqueue it if the value is 0. This way,
after Task 0 is completed, it enqueues subgraph B, and de-
creases the dependency value of subgraph E. Later, when
Task 1 finishes, it further decrements the dependency value
of E to 0 and enqueues it. This shows how the granularity of
dependency tracking is based on individual tasks rather then
entire subgraph: subgraph B does not have to wait for com-
pletion of subgraph A, and becomes ready upon completion
of Task 0.

4 Limitations

Although Mustard resolves the most challenges a device-
side runtime poses, there are certain limitations remaining
due to hardware or CUDA limitations. The most important
and restraining one is the 120-subgraph limitation of device-
side launch. While it can be overcome by merging serial or
highly interdependent vertices, the parallelism of the merged
tasks may reduce. Moreover, this limitation severely hinders
scaling, especially to multi-node execution scenarios.

There is also amemory-related set of limitations. cudaGraph,
when scaled to millions of vertices, can occupy the entire

memory of a device. This, however, becomes an issue only if
the previous limitation is resolved. Apart from that, main-
taining the ownership of data and migrating it between the
devices, which may require awareness of the system topol-
ogy and prediction of the future execution schedule is not
handled by Mustard. Instead, we focus on scenarios where
the data can be replicated on all devices or can be partitioned
between them.
Additionally, while occupancy tracking is able to handle

memory usage and number of threads and thread blocks in
use, more detailed metrics, such as register or cache usage are
inaccessible from the device side. Additionally, libraries such
as cuSOLVER and cuBLAS choose thread block and thread
count automatically, limiting the efficiency of occupancy
tracking.

InMustard,multi-node execution is only possiblewithout
dynamic load balancing. The intended use case scenarios
of Mustard cover 2 main limitations of current GPU-side
task graph execution methods: (i) Multi-node execution for
statically partitioned graphs and (ii) Dynamic load balancing
for applications whose data fits into a single GPU’s memory.

5 Evaluation

Experiments were conducted on a machine with multiple
nodes, each containing 8 NVIDIA A100 GPUs connected
to a dual-socket AMD EPYC 7742 CPU through PCIe Gen4.
Each socket has 64 physical cores, and hyperthreading was
disabled. The GPUs are connected through NVLink 3.0 inter-
connect. Measurements are taken five times and averages are
reported. We compare Mustard against four related works:

• StarPU [4] is a well-known CPU-side runtime system
• SLATE [17], is a dense linear algebra library targeting
large-scale HPC systems

• Single- and multi-GPU cuSOLVER implementa-
tions by developed and maintained by NVIDIA

• single-GPU CUDA Graph implementation.
Next, we compare the overhead of Mustard on generated

graphs and then its performance on real task graphs using
LU and Cholesky solvers.

5.1 Overhead Studies

We analyze the sources of overhead ofMustard, in static and
dynamic scheduling configurations. To assess partitioning
efficiency and its associated overheads, we conduct graph
partitioning experiments. Additionally, we test generated
graphs with varying computational intensity to demonstrate
Mustard’s efficiency across different scenarios.

5.1.1 Static scheduling overhead. We use a graph generator
as a controlled experiment where varying parameters such
as number of vertices or average degree help to understand
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Figure 5: (a) Overhead against single-GPU cudaGraph
(lower is better). (b) Speedup of various approaches

against cudaGraph on graphs with increasing task

length, given by number of FMA instructions per-

formed.METIS, dagP and even use static partitioning,

with even referring to evenly split DAG levels between

GPUs. (Higher is better)

Table 2: Overhead comparison of static graph execu-

tion. The values show the time it takes to complete

execution of a randomly generated task graph with

empty vertices, in ms. Improvement shows the reduc-

tion in overhead of Mustard over multi-GPU CUDA

Graph.

number of vertices
method 28 210 212 214

Single-GPU CUDA Graph 0.204 0.877 3.703 18.639
Multi-GPU CUDA Graph 25.026 57.214 145.966 453.530

Mustard 0.501 2.641 17.273 269.057

Improvement 50.48x 21.63x 8.45x 1.69x

sources of overhead. Table 2 shows static partitioning over-
head of Mustard compared to multi-GPU CUDAGraph on a
4-GPU system. Both methods use the same partitioning with
evenly split graph levels. Mustard exhibits significantly
lower overheads, especially in smaller graphs. The dimin-
ishing improvement with increasing graph size is largely
due to the increased number of dependency wait vertices
occupying a high percentage of warps.

5.1.2 Runtime overhead. In this experiment we use the same
graph generator to analyze the runtime overheads of dy-
namic scheduling. Overhead results for graphs with multiple
dependencies can be seen on Figure 5a. Methods shown on
the figure refer to statically partitioned CUDA Graph execu-
tions on 4GPUs with various partitioning methods (METIS
[25], dagP (directed acyclic graph partitioner) [20], and even,
evenly split DAG levels between GPUs. Note that SLATE

[17] is not on the figure since it is a linear algebra library
and it does not allow custom tasks.
Figure 5a shows pure overhead of scheduling random

graphs with no computation with different dependency pat-
terns on 4 GPUs compared to baseline, which is single-GPU
cudaGraph execution. On a 4 GPU system, StarPU shows
16.95x slowdown, while Mustard has 6.17x, making it 4.25x
faster than StarPU. The figure shows that dynamic alloca-
tion of tasks in Mustard has comparable overhead to stat-
ically partitioned approaches, which do not employ run-
time decision-making mechanisms. The overhead result also
shows that the enriched graph approach in tool provides a
viable, low overhead design for device-side synchronization
and subsequent implementation of the runtime components
on the device.

5.1.3 Varying task length. Most irregular applications can
be represented in a form of a directed acyclic graph. How-
ever, in case of a CUDA Graphs, every vertex may represent
a computation of arbitrary complexity. As such, even a sin-
gle vertex can be an irregular application of its own. Since
Mustard’s scope is orchestration of tasks that is agnostic
of the tasks themselves, Mustard does not improve the per-
formance of individual kernels. Yet, it is able to reduce the
load imbalance between devices that may arise from variable
runtime of sparse kernels without any modifications to the
approach being used. Figure 5b shows that Mustard is in
fact able to load balance compute kernels of random compute
intensity better than partitioning algorithms.
To better understand the efficiency of load balancing we

have conducted experiments with randomized compute load
using FMA (Fused-Multipy-Add) instructions. On Figure 5b
the time-to-solution of the graph execution methods under
increasing compute load is given. The reported speedups are
average across 7 different generated graphs with varying
amount of parallelism, vertex degrees and topologies. All
graphs have 120 vertices, which allows to have each separate
task to be represented by a separate schedulable subgraph.
The reported numbers show the speedup against single-GPU
cudaGraph implementation.
Methods that are based on the use of static partitioning

of the cudaGraph start seeing the benefit of multi-GPU exe-
cution only when the tasks become sufficiently long, reach-
ing up to 1,000,000 FMA instructions per task. StarPU has
been unable to yield any speedup and displayed at least 3x
slowdown compared to the single-GPU baseline. In a 4-GPU
scenario with 10,000 maximum possible FMA instruction
per task Mustard is able to show scaling, unlike the other
methods, due to lower overhead and better load balancing.
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Table 3: Experiment results for LU Decomposition. The numbers show speedup over single-GPU cuSolverGetrf call.
The tile sizes range from 2, 000×2, 000 to 10, 000×10, 000. NVIDIA’s cuSmGF is a fine-grained tiling cuSolverMgGetrf
call with 1202 many tiles, with tile size from 100×100 to 500×500. Best performance is shown in bold.

2GPU 4GPU 8GPU

size Mustard cuSmGF SLATE StarPU Mustard cuSmGF SLATE StarPU Mustard cuSmGF SLATE StarPU
12000 1.659 1.217 0.077 0.009 2.733 1.247 0.111 0.234 5.216 1.191 0.102 0.222
24000 1.546 1.099 0.055 0.224 2.560 1.520 0.052 0.223 3.163 1.540 0.049 0.210
36000 1.724 1.365 0.058 0.270 2.879 2.217 0.057 0.272 3.658 2.738 0.055 0.267
48000 1.707 1.563 0.053 0.267 2.925 2.583 0.051 0.274 4.082 3.401 0.048 0.275
60000 1.720 1.598 0.040 0.272 2.999 2.732 0.050 0.277 4.164 3.856 0.049 0.278

Figure 6: LU performance results compared to related work on up to 8 GPUs on a 36000x36000 matrix. Higher is

better. Horizontal solid line is the baseline, a single-GPU cuSolver library call.

5.2 Real Task Graphs: LU and Cholesky

To showcaseMustard’s performance, we implemented dense
LU and Cholesky decompositions. The applications are im-
plemented using NVIDIA’s cuSOLVER, and cuBLAS libraries.
For a fair comparison, all the baseline methods rely on these
libraries too, thus the resulting performances are mostly due
to the runtime components only, not the kernel implementa-
tions.

The LU decomposition is a factorization of a square matrix
A into a lower triangular matrix L and an upper triangular
matrix U, such that 𝐿∗𝑈 = 𝐴. Cholesky, on the other hand, is
a special case where the input matrix is symmetric, resulting
in a decomposition where U is the transpose of L, such that
𝐿 ∗ 𝐿𝑇 = 𝐴. It is used for solving linear systems efficiently
using forward or backward substitution. The block version
[16] of the LU and Cholesky decompositions was designed
for efficient parallelized execution.
Block LU decomposition can be represented in form of

a task graph with 4 task types: (1) a GETRF kernel that
performs LU decomposition of an individual matrix block,
(2) lower and (3) upper TRSM (triangular solve) kernels that
solve off-diagonal blocks upon completion of GETRF, and
(4) GEMM kernel that multiplies the resulting off-diagonal
blocks. An example task graph for 3x3 block configuration
is given in Figure 3.

Block Cholesky decomposition’s DAG has 4 task types as
well: (1) a POTRF kernel performs Cholesky decomposition
of a block, (2) lower TRSM kernel that solves the POTRF
result, (3) SYRK kernel that updates the upper part of the

matrix to be the transpose of the lower part, and (4) GEMM
kernel that multiplies the resulting off-diagonal blocks.
In a single-node scenario, each task is captured into a

subgraph, which may contain multiple vertices based on
the cuSOLVER or cuBLAS libraries’ decisions. Because of
device-side launch limitations the subgraph cannot contain
cudaMalloc kernels, so workspace for both cuSOLVER and
cuBLAS has to be allocated in advance. Since cuBLAS tasks
can be scheduled on a device simultaneously, multiple cuBLAS
workspaces are allocated. Due to device-side launch limita-
tions, GETRF tasks with block dimensions higher than 4096
are impossible to launch using Mustard, since the captured
graph of the cuSOLVER kernel contains cudaMalloc nodes
regardless of the pre-allocated workspace. To alleviate this
issue we recursively create an LU decomposition cudaGraph
with smaller block dimensions for such large GETRF tasks.
Cholesky decomposition’s POTRF kernel does not insert
cudaMalloc nodes even for large block sizes. Because of the
dynamic task allocation, the experiments are conducted with
matrix sizes that can be allocated in a single GPU’s memory,
as there is no a priori task allocation and no guarantee that
more than a single GPU will be working.
The implementation of LU decomposition for the multi-

node scenario follows the methodology described in Section
3.1.4. The graph is partitioned between the devices and inter-
GPU dependencies are handled by Mustard. Additionally,
the method uses a circular buffer for the communicated data
and the data races are avoided by introduction of cudaGraph
dependencies between the vertices accessing the same buffer
regions.
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Table 4: Experiment results for Cholesky Decomposition. The numbers show speedup over single-GPU

cuSolverPotrf call. The tile sizes range from 1, 500×1, 500 to 7, 500×7, 500. NVIDIA’s cuSmGF is a fine-grained

tiling cuSolverMgPotrf call with 1202 many tiles, with tile size from 100×100 to 500×500. Best performance is shown

in bold.

2 GPUs 4 GPUs 8 GPUs

size Mustard cuSmG cuSmGF Slate StarPU Mustard cuSmG cuSmGF SLATE StarPU Mustard cuSmG cuSmGF SLATE StarPU
12K 1.153 0.932 0.188 0.161 0.099 1.515 0.834 0.177 0.111 0.083 1.839 0.729 0.163 0.399 0.061
24K 1.378 1.166 0.819 0.211 0.252 1.857 1.195 0.934 0.176 0.235 1.978 1.046 0.766 0.678 0.211
36K 1.399 1.227 1.198 0.302 0.318 2.013 1.425 1.829 0.256 0.323 2.288 1.308 1.906 1.008 0.303
48K 1.471 1.249 1.412 0.373 0.357 2.164 1.477 2.286 0.330 0.360 2.449 1.406 2.720 1.366 0.356
60K 1.525 1.252 1.491 0.412 0.366 2.258 1.487 2.500 0.362 0.388 2.728 1.463 3.185 1.657 0.386

Figure 7: Cholesky performance results compared to related work on up to 8 GPUs on a 36000x36000 matrix.

Higher is better. Horizontal solid line is the baseline, a single-GPU cuSolver library call.

5.3 Single-Node Results of LU and

Cholesky with Dynamic Scheduling

We compare our implementation against StarPU [4] run-
time and SLATE [17], as well as single- and multi-GPU cu-
SOLVER implementations and single-GPU CUDA Graph.
While SLATE is not a runtime, it relies on OpenMP tasking
for scheduling of linear solvers and other linear algebra appli-
cations. The results are reported for 62 tiles setup for LU and
82 tiles for Cholesky, since it allows to avoid task graph par-
titioning. This tiling allows to keep the graph structure the
same regardless of matrix size. The tile sizes therefore, range
from 2, 000×2, 000 to 10, 000×10, 000 in LU and 1, 500×1, 500
to 7, 500×7, 500 in Cholesky.
Most implementations benefit from bigger tile sizes and

therefore lower task granularity, since the underlying BLAS
libraries such as cuBLAS yield best performance with large
tile sizes in order of thousands. cuSolverMg calls, however,
benefit from fine-grained tiling due to its multi-GPU matrix
partitioning algorithm. It allows to expose parallelism and
efficiently balance the load between devices. To showcase
the effect of fine-grained tiling and for fair comparison to
the state of the art we report cuSOLVER results with 1202
tiles as well, labeled as cuSmGF, with tile sizes ranging from
100×100 to 500×500.

The results are reported in Tables 3-4 and Figures 6- 7 for
LU and Cholesky, respectively. The reported numbers in the
figures show TFLOPS achieved (higher is better). There is

no cuSolverMg data because the cuSolverMgGetrf kernel
terminated with the large tile size setting.

Overhead. Single-GPU results display the comparison and
overhead of the existing methods. Mustard shows little
slowdown even with small matrix sizes, which consists of the
overhead of cudaGraph together with the GPU-side runtime
components. Additionally, Figure 7 shows how fine-grained
tiling of cuSmGF cuSolverMgPotrf (with 1202 many tiles)
introduces additional overhead compared to coarse-grained
cuSolverMg version.

Scaling. Mustard displays good strong scaling up to 6
GPUs. Due to the lack of locality awareness, communica-
tion between devices start to restrict the potential perfor-
mance improvements with higher GPU counts, meanwhile
the diminishing inter-GPU parallelism exposed by the re-
ducing number of schedulable tasks in tiled matrix factoriza-
tion algorithms exacerbates the scaling issue. Despite this,
Mustard manages to achieve better or similar 8 GPU perfor-
mance to proprietary NVIDIA cuSOLVER library. Moreover,
with smaller matrices Mustard exhibits better scaling than
all of the tested methods. It is able to provide best time-to-
solution for both algorithms with matrix size up to 36000.
With smaller number of GPUs, Mustard performs well too,
winning in all of the tested runs.
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Table 5: Experiment results for multi-node (parti-

tioned) LU Decomposition. The numbers show theoret-

ical TFLOPS achieved. All methods use 1202 many tiles,

with tile sizes ranging from 1000×1000 to 3000×3000. Ev-
ery node has 8 NVIDIA A100 GPUs.

Matrix sizes

120K 240K 360K

method 1 node 2 nodes 4 nodes 8 nodes 2 nodes 4 nodes 8 nodes 8 nodes
StarPU 4.886 4.545 4.667 6.136 39.00 35.17 36.778 116.31
SLATE 24.527 37.942 46.588 55.717 72.832 89.62 110.35 126.97

Mustard 96.287 194.25 327.28 461.62 205.06 332.73 535.53 551.98

Figure 8: LU performance results compared to related

work on up to 8 nodes on a 120,000x120,000 matrix.

5.4 Multi-Node Results of LU and Cholesky

with Static Scheduling

In a multi-node scenario with up to 8 nodes Mustard shows
highest performance compared to existing methods in all test
cases. All example use the same tile sizes for fair comparison.
Since cuSOLVER calls do not support multi-node execution,
only SLATE and StarPU were compared against. Unlike in
the single-node case, SLATE shows good scaling, as it is
aimed at HPC environments.

Figure 8 displays that both SLATE and Mustard are able
to scale with the increasing node count, while Mustard
also achieves highest FLOP rates. Table 5 shows results for
three different matrix sizes. Note that it does not show all
node count combinations due to memory limitations. With
larger matrices, performance of Mustard shows a marginal
increase in performance. However, despite the increased per-
formance of other methods with larger matrices, the relative
difference compared to Mustard and the reported FP64 per-
formance of NVIDIA A100 GPU indicates that it is able to
achieve FLOP rates close to the theoretical peak even when
computational costs are small. As a result, the speedup of
Mustard ranges between 2.81x and 8.28x, and between 4.75x
and 75.2x compared to SLATE and StarPU, respectively.

6 Conclusion

Mustard is designed for executing task graphs on multi-
GPU systems, prioritizing load balancing and communica-
tion management without relying on host CPU control. Once
provided with a task graph, Mustard undertakes several

steps to modify and execute a highly complex graph on a
multi-GPU system without changing the CUDA kernels. On
a single GPU with synthetic graphs, Mustard’s overhead
is reasonable. In single-node settings, the experimental re-
sults with LU and Cholesky decompositions demonstrate
that Mustard’s load balancing feature can achieve much
higher performance than related works, including StarPU,
SLATE, as well as multi-GPU cuSOLVER implementations.
On multiple compute nodes, Mustard achieves efficiency
close to theoretical peak of the hardware. Future work will
demonstrate Mustard on AMD GPUs using ROCm tech-
nologies and include more application studies to show its
applicability to other task graphs.
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