P-MOVE: Performance Monitoring and
Visualization with Encoded Knowledge

Fatih Tagyaran
Computer Science and Engineering
Sabanci University
Istanbul, Turkey
fatihtasyaran @sabanciuniv.edu

Aleksandar Ilic
INESC-ID
Universidade de Lisboa
Lisbon, Portugal
aleksandar.ilic@edu.ulisboa.pt

Abstract—P-MoVE is a modern, open-source framework de-
signed to monitor and visualize live and/or recorded performance
data with the ultimate goal of being a digital twin for HPC
systems. Leveraging a Knowledge Base (KB), built upon an HPC-
specific ontology with an intuitive encoding for comprehending
the performance, it rigorously manages telemetry samplers,
databases, and visualization frameworks. The KB is generated
through an in-depth probing of the system. It enables the con-
figuration and monitoring of performance metric samplers, the
generation of real-time visualizations, the establishment of linked-
data connections, and the generation of queries for advanced
analysis. Furthermore, with an Abstraction Layer, P-MoVE can
be used for low-level profiling even on components from different
vendors. It is equipped with modern profiling capabilities, includ-
ing live cache-aware roofline modeling, crafted to provide real-
time insights without impeding system performance. P-MoVE’s
capabilities have been demonstrated on various architectures
using microbenchmarks and a common kernel, sparse-matrix
vector multiplication.

Index Terms—HPC, profiling, performance visualization, opti-
mization, digital twins for HPC.

I. INTRODUCTION

Performance variations caused by hardware capabilities and
software factors such as load imbalances, CPU throttling,
reduced frequency, shared resource contention, and network
congestion can result in up to a 100% difference in perfor-
mance [1]. To efficiently and effectively find the root causes
of these variations, one requires a comprehensive, structured
knowledge of the computational system generated via novel
monitoring, profiling, and forecasting tools. Nevertheless, the

This work was supported by Scientific and Technological Research Council
of Turkey (TUBITAK), Fundagio para a Ciéncia e a Tecnologia of Portugal
(FCT) and EuroHPC Joint Undertaking through grant agreement No 220N254,
UIDB/50021/2020 and grant agreement No 956213 (SparCity), respectively.
Authors from Ko¢ University were supported in part from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 949587).The numerical
calculations reported in this paper were partially performed at TUBITAK
ULAKBIM, High Performance and Grid Computing Center (TRUBA re-
sources).

Osman Yasal
Computer Engineering
Ko¢ University
Istanbul, Turkey
oyasal22 @ku.edu.tr

Didem Unat
Computer Engineering
Kog¢ University
Istanbul, Turkey
dunat@ku.edu.tr

José A. Morgado
INESC-ID
Universidade de Lisboa
Lisbon, Portugal
jose.a.morgado@tecnico.ulisboa.pt

Kamer Kaya
Computer Science and Engineering
Sabanct University
Istanbul, Turkey
kaya@sabanciuniv.edu

diversity within HPC ecosystems brings challenges in system
design, performance engineering, and optimization, necessitat-
ing innovative models and approaches to skilfully steer inside
a complicated computing environment.

Various tools can systematically collect and store informa-
tion from performance metric sources [2]-[5]. However, they
do not create a comprehensive knowledge base and most do
not provide a live or automated analysis framework. Hence,
there is a need for tools capable of tracking every individual
HPC component leveraging component-based kernel statistics
and physical hardware performance counters. We propose
P-MOVE, a major step to create a virtual modeling and
simulation framework to untangle and comprehend the under-
lying complexities and interactions, thereby making judicious
decision-making, enhanced system performance, and efficient
resource management possible. Currently, the tool has modern
profiling capabilities such as live/offline monitoring, visual-
ization, and analysis e.g., cache-aware roofline analysis. We
believe that the flexible design of P-MOVE makes it a good
candidate to implement a digital twin of an HPC system, which
can model, observe, and analyze the inherent and potential per-
formance variability in detail. In its core, the knowledge base
is deeply incorporated in almost every functionality. It contains
the machine specification, topology, and configuration param-
eters of the tools/frameworks on top of an HPC-specific ontol-
ogy, a must-have for digital twins. The KB also contains histor-
ical job metadata linked to the sampled performance metrics.

P-MOVE’s knowledge encoding leverages the same ideas
used in digital twins. While ontologies exist for various
domains, such as industrial machines [6] and cities [7], there is
limited work on ontologies for a computational system. More-
over, unlike existing twins collecting data from stable sources,
P-MOVE tackles highly-sensitive and volatile platforms,
which impose a novel set of challenges to its design, such as
being minimally disruptive in terms of performance and sus-
taining high accuracy with a limited number of performance-

monitoring units (PMUs). In this work, we focus on the
design and validation of P-MOVE and its potential to address
the challenges posed by the complex computational system
landscape. The contributions can be summarized as follows:

o We propose a modern, digital-twin-inspired design of an
open-source! performance monitoring and visualisation
framework, P-MOVE. Live monitoring and cache-aware
roofline analysis are implemented on top of this to provide
real-time insights with minimal interference.

o We derive an ontology as a guide to comprehending data
center and HPC servers in an organized and intuitive
manner. With this, P-MOVE constructs a knowledge base
used to perform all the tasks on the linked performance
data. To handle the architectural diversity and be as
automated as possible, it leverages an abstraction layer.

« We have used a variety of servers to assess the practical
value of P-MOVE on microbenchmarks and SpMV kernels.
While doing this, we have also observed and measured the
overhead incurred, the precision of measurements and the
number of data points that can be collected per second.

« P-MOVE’s main innovation lies in its ability to dynamically
construct and maintain a detailed knowledge base that
captures system behavior and interactions. This enables
comprehensive system view and advanced visualization
capabilities which will be useful for analyzing various
components, such as memory hierarchies, cache behaviors,
and computational bottlenecks, with the aim of enhancing
system performance and resource management.

Overall, P-MOVE methodically paves the way in under-
standing and optimizing HPC systems as a comprehensive,
systematically designed, open-source digital-twin framework.
Its historical data access capability, as well as a global view
with SUPERDB, can be leveraged to replay or simulate
various configurations to identify bottlenecks and propose
potential hardware or software configurations. Although we
do not touch these in this design-focused study, P-MOVE’s
functionalities can be extremely valuable for tasks such as
predictive performance modelling on a candidate architecture,
suggesting hardware upgrades, or providing novel insights.

The paper is organized as follows: Section II summarizes
the related work and Section III introduces P-MOVE. Its
working mechanics and additional features are given in
Section IV. Section V presents the experimental results and
Section VI concludes the papers and discusses future work.

II. BACKGROUND & RELATED WORK

The related literature can be investigated in three contexts:
monitoring frameworks, profiling methods, and digital twin
ontologies. To systematically collect and analyze information
from performance metric sources, several frameworks have
been developed, e.g., LDMS [2], [3], Ganglia [8], Nagios [4],
and PerfAugur [5]. E2EWatch [1] specializes in system-wide
monitoring using Linux metrics and focuses on anomaly
classification and detection. ClusterCockpit [9] reports

Uhttps://github.com/sparcityeu/Digital- SuperTwin.

performance metrics from distributed systems to InfluxDB
and offers dashboards and job history queries. However, these
tools have limitations, such as supporting only preselected
set of metrics and lacking a comprehensive knowledge
representation and linked-data capabilities.

Linked data is used in different branches of science for
knowledge management, such as biology [10] and physics
[11]. RDF (Resource Description Framework) is a standard-
ized approach for organizing data as triples, a source node
(the subject), an edge name (the predicate), and a target node
(the object). To enhance this structure, RDFs incorporate extra
identifiers for node descriptions and properties. JSON-LD, an
RDF serialization, has unique attributes, differing it from the
JSON format. The most common attributes are @context,
@id and type. With these, JSON-LD describes the datatypes,
and how to parse and process them. This allows the creation
of large-scale twins of interconnected systems from their
building blocks. For each domain, unique document structures,
i.e., ontologies, are designed to keep static metadata. For
liveness, new triples need to be continuously injected, which
makes these structures impractical for managing time-series
data as is [12]. To our knowledge, no existing tool exploits
this flow and generates a digital twin via linked data. Thus,
there is a gap in the literature where both ends should meet.

We expect that digital twins for HPC systems will differ
from others due to the abundance of sensors, where each
sensor, such as a hardware register or PMU, is capable of
reporting thousands of metrics through re-programming.
Treating processes as unique components further adds to the
heterogeneity. DTDL (Digital Twins Definition Language),
a derivation of JSON-LD, consists of six metamodel
classes that explain the context of digital twin components.
These classes encompass Interface, Telemetry, Properties,
Commands, Relationship, and various data schemes. In
DTDL, each Interface represents a standalone (sub)twin,
encompassing descriptions of its Properties, Telemetry, and
Relationships. P-MOVE combines these components to
hierarchically model an HPC system’s structure, considering
each individual component (e.g., node, socket, CPU, GPU,
memory subsystem, etc.) as a distinct digital twin. The notion
that each interface stands as an individual (sub)twin is a core
principle extensively leveraged in P-MOVE.

The Roofline Model [13], and its numerous variations [14]—
[16], including the Cache-Aware Roofline Model (CARM)
[17], have emerged as invaluable tools to evaluate the compu-
tational capabilities of contemporary processors and pinpoint-
ing potential performance limitations [18], [19]. P-MOVE
incorporates CARM due to its ability to accurately characterize
the entire system by considering all memory levels. However,
the current literature primarily relies on a single tool, adCARM
[20], for CARM generation, which is tailored for Intel archi-
tectures, leaving a gap in support for AMD systems. In this
work, an extension is introduced to support AMD systems
under the P-MOVE framework. Furthermore, this work also
addresses another gap in the area of Roofline modeling in
general; real-time CARM visualization during execution. P-

Cluster

|@id:dtmi:dt:c|uster0;1
Level

System [dtmi:dt:compute1:system;1

12
| id:dtmi:dt:compute0:observation22:;1 (@id:dtmi:dt:compute0:benchmark3:;1
. R type: Observationinterface (@type: Benchmarkinterface
| |d@m t:compute0:system;1 | @id:"dtmi:dt:fedora:cache54:telemetry1997;1"

Level [@type: Interface type: Interface @type: HWTelemetry
contents:[
Socket @id:dtmi:dt:compute0:socket0;1 |§id:dtmi:dt:computeo:so:keﬂ;1 name:"metric101",
Level |[@type:Interface type: Interface (PMUName:"CYCLE_ACTIVITY:STALLS_L2_MISS",)
. {SamplerName: "perfevent.hwcounters.CYCLE_ACTIVITY_STALLS_L2_MISS"]
Core @id:dtmi:dt:compute0:core19;1 @id:dtmi:dt:compute:core20;1 [DBName "perfevent_hwcounters_CYCLE_ACTIVITY_STALLS_L2_MISS_value”,]
Level |@type:Interface (@type: Interface

Thread (@id:dtmi:dt: computeo thread38;1 id:dtmi:dt: computeo thread39;1
Level |[etype: Interface type: Interface

Cache (@id:dtmi:dt: computeo L1D:cache54;1 | |
(@type: Interface

/l' — @ influxdb—» () Grafana—

Performance Co-Pilot ALl Ly M“

perf—

Fig. 1: Knowledge Base of P-MOVE.

MOVE introduces the novel tool, the live-CARM panel, which
takes performance-counter data and automatically calculates
CARM-related metrics, displaying them in conjunction with
other metrics to give users an immediate idea of how their
application performs relative to architectural limits which is
a prime example of leveraging the capabilities of P-MOVE.

III. MODELING HPC SYSTEMS WITH LINKED DATA

P-MOVE relies on a comprehensive Knowledge Base (KB)
and linked-data capabilities. The KB is given to each function
as a parameter - it is a snapshot of every piece of information
obtained from probing and previous analyses. It is dynamic
and evolving to capture and link additional telemetry and
metadata as they become available. This allows P-MOVE to
continue its operations in a live fashion without a procedural
change and comprehend the factors influencing system
performance in real-time. An example KB is shown in Fig. 1.

A. The Knowledge Base

Capturing the target system and its component hierarchy, the
KB can be parsed to acquire any information from topology
to database parameters. P-MOVE leverages Performance Co-
Pilot (PCP) [21] to offer a robust and full-fledged metric col-
lection, transport, and storage framework efficiently handling
diverse hardware and performance metrics and enabling the
creation of digital twins.

Here we explain how performance data is collected and
incorporated into the KB. There are two types of metrics to be
sampled from an HPC system. The first type is SWTelemetry,
i.e., software and system state-related metrics such as the
number of processes, CPU, and memory load. These metrics
are set to be always sampled with a low frequency. The second
type is HWTelemetry, sampled from PMUs during kernel
executions with high frequency. Sampling different metrics
with varying frequencies yields a need for metadata associated
with the host system’s metadata. While time-series databases
are tailored for telemetry data, they cannot keep much
(linked) metadata. On the contrary, managing time-series data
via a document database is impractical [12], [22]. For this
reason, P-MOVE’s KB uses two types of databases with links
between them. To this end, while InfluxDB stores the sampled

SWTelemetry and HWTelemetry, MongoDB stores the
knowledge base as JSON-LD extended with entries for each
computation. To associate the computations with telemetry,
pointers to InfluxDB are used to recall corresponding metrics.

B. Visualization with the Knowledge Base

Employing a tree-structured KB enables fully automated
performance monitoring, anomaly detection and dashboards
with meticulously selected metrics, tailoring various views.
These views, namely (a) Focus View, (b) Subtree View, and
(c) Level View, allow for a dynamic and versatile performance
data exploration. Multiple views enable fine- and coarse-grain
investigations into the component and system performance.
Overall, P-MOVE can visualize data from different com-
ponents and systems in tandem allowing for comprehensive
analysis and comparison, further enriched by the inclusion of
various views using the Grafana visualization tool.

o The focus (i.e., component) view visualizes metrics from a
single component, e.g., a socket, core, thread, network, disk,
or process, providing a lens on individual performance.
This view can be extended to focus on the path from the
root (whole system) to a unique component to investigate
the root cause of anomalies or performance drawbacks.
That is the path navigating from a component perspective to
a more generalized system perspective is analyzed, aiding
in tracing and isolating performance issues. An example
focus-view dashboard is given in Fig. 2(a) for a cache.

o« The subtree (i.e., (sub)system) view zooms into
performance events, starting from an arbitrary node and
extending to all connected leaf nodes, moving from a generic
perspective to a more specific one, i.e., from a socket to all
cores/caches. The detail level increases as the path moves
from the root (subsystem) to the leaf (bottom components
of the KB hierarchy), facilitating a deeper dive into specific
performance events and data. An example subtree-view
dashboard for a single server is given in Fig. 2(b).

o The level (i.e., type) view visualizes multiple instances
of the same type, such as a group of threads, disks and
processes. This allows the isolation of a specific type
and corresponds to a level in the KB tree, viewing them

computeT:L2:cc54 [RE N

(a) Focus view for an individual cache

Observation Result

random

57.8s v-19%

degree

73.6s » 3%

none rcm

71.7s 51.4s v-z8%

MEN_LOAD_RETIRED-L1_HIT 'MEN_LOAD_RETIRED'L1_HIT MEAN

m‘ss‘maﬂsl ‘ 6230070334
none rem
degree

random

GEO) OmsD 03820

(c) Level view for processes

- T
s |

| 316748248
et |

308 [f
|

(b) Subtree view for a node

Obsarvation Result

icl_none

71.85 v-us

skx_none

160.9s a5

icl_rcm

51.4s v-s

skx_rcm

111.2s

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

ko
‘ 613121140 ‘

icl_rem icl_none

| skx_rem
108885299

(d) Level view for procs/sockets

Fig. 2: Dashboards, automatically generated by P-MOVE .

individually or in comparison. The linked-data capabilities
enable the automatic visualization of performance across
different machines. For instance, the level-view dashboards
for different processes running SpMV on two sockets with
two different orderings (none, rcm, degree, random) and
on different servers (skx, icl - see experiments for details)

of a matrix are given in Figs. 2(c) and 2(d).

In P-MOVE, each dashboard is only a simple JSON
file (e.g., Lising 1). A dashboard can be modified by the
users and saved for the next sessions. The corresponding
JSON file can be shared by multiple users, etc. With a plugin,
Grafana processes the file and handles the connections to the
streaming database that stores the performance data coming
from P-MOVE telemetry agents and displays them.

1o

2| "id": 1

3| "panels":

4 [{"id": 1,

5 "targets":

6 [{"datasource":

7 {"type": "influxdb",

8 "uid": "UUkm1881"},
9 "measurement": "perfevent_hwcounters_FP_ARITH_
10 SCALAR_SINGLE_value",
11 "params": "_cpuO"}]}]
12| "time":

13 {"from": "now-5m",

14 "to": "now"}

15| }

Listing 1: JSON for simple Grafana dashboard - From target fields
datasource, uid, measurement and params are stored in STD and used
to generate panel.

C. Keeping the Knowledge Base Live

The knowledge base is not a static object. It captures more
about the system it represents as time passes by attaching

new entries. To initialize the KB, P-MOVE uses its probing
tool. To comprehensively capture the system structure,
including component specifications, inter/intra-relationships,
and their associated performance metrics, a detailed probing
is required. P-MOVE targets each hardware component that
can be monitored, produce metrics or affect the overall system
performance. Furthermore, it captures their relationships in
a lightweight and adaptable fashion. The probing relies on
widely available Linux tools to gather data. The system,
network, and memory information are collected via 1shw.
The CPU, memory/cache topology metadata are collected by
parsing likwid-topology from likwid tools [23] and
cpuid instruction. When available, disk info is probed from
/sys/block/x/device and SMART [24] utility. PMU
information is collected with 1ibpfm4 library, which can
recognize model-specific registers (and events) of virtually
every x86 and ARM processor on the market. The available
PMU metrics via 1ibpfm4 and software telemetry via PCP
are filtered and mapped with the components.

In the initial KB, every component that performs
computation, communication, or I/O is represented with
an Interface. Each relationship among the components
is encoded into these interfaces with a Relationship.
The available component metrics are filtered and encoded
as SWTelemetry and HWTelemetry. This enables precisely
pinned executions and automated queries. To keep the
KB live and continuously link the system components
to performance data, P-MOVE uses Interfaces and
attaches their instances (i.e., entries) to KB. Except for a
ProcessInterface entry, all classes/interfaces have their

values assigned as constants during the generation phase. In

contrast, a ProcessInterface is re-instantiated each time

it is invoked, reflecting the processes’ dynamic nature. For
performance events, P-MOVE has two other interface classes:

e BenchmarkInterface, and BenchmarkResult
as a helper class, is designed to record benchmark
results. P-MOVE can perform Cache Aware Roofline
Model (CARM), STREAM [25] and High Performance
Conjugate Gradient [26] (HPCG) benchmarks using the
BenchmarkInterface. As the probing phase, P-MOVE
first copies the benchmark source codes to the target system.
If possible, based on the information in KB, it first compiles
the benchmarks on the target system using a preferred
compiler, e.g., icc or gcc. After the benchmark, P-MOVE
parses the results and creates a BenchmarkInterface
with the corresponding BenchmarkResult.

e ObservationInterface entries encode sampled
hardware performance events and system metrics, executed
commands, generated affinity, time and other relevant
metadata. Using the parameters in KB, queries are
generated to automatically retrieve data through these
entries. A basic entry is shown in Listing 2. The queries
automatically generated by P-MOVE to analyze the
BenchmarkEntry in Listing 1 are given in Listing 2.

D. Adding Compute Devices to P-MOVE

The integration of a computing device, i.e., FPGA, GPU,
etc., into the KB is as easy as adding other components.
Initially, an in-depth probing of the target devices is done
using the available tools. In the case of NVIDIA GPUs,
which is the only GPU architecture supported by the
current implementation of P-MOVE, this investigation uses
nvidia-smi to find GPUs, their models, bus and process
information. /sys/class/drm/ is used for NUMA
location, and DeviceQuery for the HW specifications
such as the number of SMs, shared memory, and cache
sizes. The latest GPUs lack the capability for real-time HW
telemetry reporting without source code modifications. To
address this, we used pcp-pmda-nvidia for collecting
SWTelemetry, essentially capturing every metric supported
by NVML. Regarding HWTelemetry, we leveraged the
approach used in benchmark executions. P-MOVE is tasked
with creating a wrapper script for initiating the kernel launch
and configuring ncu to record runtime HW performance
events. Following these executions, it analyzes the output from
ncu, integrating these comprehensive performance metrics
into the KB through the ObservationInterface. An
example for (a subset of) an Interface encoding a GPU
device in KB is given in Listing 4.

E. Connecting P-MOVE Instances Globally

For long-term data management, P-MOVE operates a
global performance database, SUPERDB. Unlike local
instances, SUPERDB employs cloud instances of MongoDB
and InfluxDB. With a global performance database, P-MOVE
aims to accumulate metrics from a wide array of systems

to enhance architectural research and train robust machine
learning models, particularly leveraging Large Language
Models (LLMs) which can exploit the rich metadata.

{

1

2 "Q@type": "ObservationInterface"

3 "@id": "278e26c2-3fd3-45e4-862b-5646dc9e7aal",
4 "displayName": "rcm_rmalO_mt",

5 "time": 48.667,

6 "command": "./spmv -f rmal0.mtx -o rcm -t 4",
7 "modifier": "likwid-pin -g -c S0:0-1@S1:0-1",
8 "no_threads": 4,

9 "involved_threads":

10 "sampled_sw_metrics":
numa.alloc.hit",

[0,1,22,23],
["kernel.percpu.cpu.idle",
"mem.numa.alloc.miss"],

11 "sampled_hw_metrics": ["RAPL_ENERGY_PKG", "
INSTRUCTION_RETIRED", "FP_ARITH:SCALAR_DOUBLE", "
MEM_LOAD_RETIRED:L1_HIT"],

12 "dashboard": "http://localhost:3000/d/-PiOFZEVz/pmus-278
e26c2-3fd3-45e4-862b-5646dc9e7aal0?time=1681499308500&
time.window=17000"

"mem.

13| }

Listing 2: An example ObservationInterface entry which is
used to retrieve sampled metrics. A report is generated on the fly and
added to the entry before appending to KB.

SELECT "_cpuO", "_cpul", "_cpu22", "_cpu23" FROM "
kernel_percpu_cpu_idle" WHERE tag="278e26c2-3fd3-45e4
—862b-5646dc9e7aal"

2| SELECT "_node0O", "_nodel" FROM "mem_numa_alloc_hit" WHERE

tag="278e26c2-3fd3-45e4-862b-5646dc9%e7aal"

3| SELECT "_cpuO", "_cpul", "_cpu22", "_cpu23" FROM "

perfevent_hwcounters_fp_arith_scalar_double" WHERE tag=

"278e26c2-3fd3-45e4-862b-5646dc9e7aal"

4| SELECT "_node0O", "_nodel" FROM "

perfevent_hwcounters_RAPL_ENERGY_PKG" WHERE tag="278

e26c2-3fd3-45e4-862b-5646dc9e7aal"

Listing 3: Queries automatically generated by P-MOVE for
the BenchmarkInterface entry given in Listing 1.

1| "dtmi:dt:cnl:gpu0;1": {

2| "@type": "Interface",

3| "@id": "dtmi:dt:cnl:gpul;1",

4 "@context": "dtmi:dtdl:context;2",

5| "contents": [

6| {

7 "@id": "dtmi:dt:cnl:gpul:property0;1", "@type":"
Property",

8 "name": "model", "description": "NVIDIA Quadro GV100"

9},

10| {

11 "@id": "dtmi:dt:cnl:gpulO:propertyl;1", "Qtype": "
Property",

12 "name": "memory", "description": "34359 Mb"

13},

14| {

15 "@id": "dtmi:dt:cnl:gpulO:propertyl2;1", "Q@type": "
Property",

16 "name": "numa node", "description": 0

17) },

18] {

19 "@id": "dtmi:dt:cnl:gpul:telemetryl337;1",

20 "@type": "SWTelemetry", "name": "metric4",

21 "SamplerName": "nvidia.memused", "DBName": "
nvidia_memused"

2},

23| {

24 "@id": "dtmi:dt:cnl:gpul:telemetryl404;1"

25 "@type": "HWTelemetry",

26 "name": "metricl37",

27 "PMUName": "ncu",

28 "SamplerName": "gpu__compute_memory_access_throughput",

29 "DBName": "ncu_gpu__compute_memory_access_throughput",

30 "FieldName": "_gpu0",

31 "description": "Compute Memory Pipeline: throughput of

32 internal activity within caches and DRAM",

33(}H}

Listing 4: An example GPU Interface entry which is used to
monitor GPU devices on the system and profile kernel executions.

The users have the option to report their performance
telemetry readings and the system’s KB to SUPERDB,

Probing Scenario A

Ishw

cpuid

likwid-topology 1
libpfm4

probing.json

Generate @

generate o
I
@ generate grafana !
panels : .

Legend
() Executed at host system

B Executed at target system

- -+ Data transaction

Knowledge Base

, i @ Reconfigure
’ @ perfevent
1
Generate A
ObservationSampler
® pep2influxdb &
Generate
observation script

Environment
variables

A
1
I
1

&3)

Scenario B

@ influ

1

:
: panels

1

ObservationIOnterface

Fig. 3: Two scenarios within the P-MOVE framework.

alongside their local instances. The proposed Observation
Interface evolves into two versions within the performance
database context: TS ObservationInterface and
AGGObservationInterface, where the latter statisti-
cally summarizes data using various aggregations, e.g., min,
max, mean, to manage high data volumes. The users require
a local P-MOVE instance to access SUPERDB, visualize
performance data, and automatically generate dashboards
and reports. Without P-MOVE, they can only download
selected data for ML training. Future adaptations may include
appending source code and binary executables to the collected
metadata, facilitating the training of models that can optimize
code and predict performance and potential inefficiencies.

IV. THE MECHANICS OF P-MOVE

P-MOVE is designed to run on a host that can be different
than the target system. The host runs the P-MOVE daemon as
well as the tools with heavy workloads, e.g., InfluxDB, Mon-
goDB, and Grafana. The target only runs the PCP samplers and
reports telemetry to the host when requested. In Figure 3, step
(0) reads the environment variables such as the IP addresses of
InfluxDB and MongoDB instances and Grafana token to the P-
MOVE daemon. In step (1), the probing module is copied to the
target system to generate a JSON file containing the system in-
formation (collected from all the tools, components, and third-
party tools), which, in (2), is copied back to the host to generate
the KB. Once the KB is generated, it is inserted into MongoDB
in step (3). Step (@) re-occurs every time KB changes or P-
MOVE is restarted. When this phase is completed, the frame-
work becomes fully functional using only this data structure.

In Figure 3, two P-MOVE scenarios are shown; the first
is sampling software emitted metrics to monitor system
state (Scenario A), and the other is capturing the HW
performance events during kernel execution. In step ,
using KB, P-MOVE configures the PCP collectors and
samples system-related metrics, such as CPU and memory

usage, NUMA-related events, and energy spent. In , a
sampler on the target is requested for this telemetry. Since the
query parameters are already encoded in KB, steps and
can happen at the same time. That is the dashboards are
already generated on the host when the target starts reporting.
In Scenario B, P-MOVE samples HW events from the
PMUs. In this case, it focuses on the execution on the target
components. It requests an executable and its command-line
parameters. Once these are provided, the PMUs are configured
to report the requested metrics in step . That is P-MOVE
configures the sampler in the same way as step . After the
PMUs are configured, it generates a script to run the requested
kernel on the target system. This script bounds the threads to
the cores using one of the balanced, compact, numa balanced,
numa compact strategies based on the probed target system
topology. Then it samples performance events, executes the
script to run a kernel on a target and stops the sampling
as the kernel is halted. An ObservationInterface
is generated to encode the execution metadata, collected
metrics and the unique observation ID associated with
the time-series data in InfluxDB. In step , the
ObservationInterface is appended to the system’s KB.
This ObservationInterface entry is later used to recall
the performance data for visualization or analysis purposes.

A. Abstraction Layer

To monitor PMU events on diverse systems hosting CPUs
across various vendors and microarchitectures, P-MOVE
leverages an Abstraction Layer. The PMUs and their events
can significantly vary among different microarchitectures
and from vendor to vendor. For instance, Intel has four
programmable counters/per-core to count performance events
(eight if is not shared with a second thread in the core),
whereas AMD has two internal counters, one for each
sampling flag. Intel provides 62 sub-events corresponding to
12 events, each accompanied by mask values. AMD offers

support for events similar to Intel. As an example, similarities
and differences of events for Intel Cascade and AMD Zen3
are listed in Table I.

[Event Intel Cascade [AMD Zen3
Enerey RAPL_ENERGY_PKG RAPL_ENERGY_PKG
RAPL_ENERGY_DRAM RAPL_ENERGY_DRAM
Retired Inst. [INSTRUCTIONS_RETIRED RETIRED_INSTRUCTIONS
ITot. Mem. Op IMEM_INST_RETIRED:ALL_LOADS +LS_DISPATCH:STORE_DISPATCHH
: * P MEM_INST_RETIRED:ALL_STORES [LS_DISPATCH:LD_DISPATCH

IL3 Hit Not Supported [LONGEST_LAT_CACHE:MISS +

[LONGEST_LAT_CACHE:RETIRED

TABLE I: Intel vs. AMD PMU events: the same, similar, different,
and exclusive event names for the same generic event, respectively.

To facilitate PMU event monitoring in a platform-agnostic
manner, the Abstraction Layer maps generic event names
to concealed HW-specific PMU event names, enhancing the
system’s versatility and ease of use. We have established a
set of common events, such as L1_CACHE_ DATA_MISS,
FP_DIV_RETIRED, and RAPL_ ENERGY_ PKG, that are
assumed to be supported by the commodity CPUs. The rest
of the events are left to the user’s discretion. For further
flexibility, P-MOVE utilizes configuration files to establish a
straightforward mapping of common events to corresponding
HW events. The structure of a configuration file is as follows:

[pmu_name | alias]
<generic_event>:<hardware_event_1>
[op] ((+1=1%1/) (<hw_event> |

[op]

<const>)) [op]

Following the pattern delineated, it is possible to generate
a configuration file for “any” hardware by specifying the
events intended for monitoring. Upon registering the desired
configuration files within P-MOVE, the application proceeds
to configure the PCP of the target system using the registered
configuration files when needed. Additionally, users can
access event information in a CPU agnostic manner within
the program using pmu_util.get (...) method. An
example is given below;

>pmu_utils.get (HW_PMU_NAME, COMMON_EVENT_NAME)
>pmu_utils.get ("sk1l", "TOTAL_MEMORY_OPERATIONS")
>["MEM_INST_RETIRED:ALL_LOADS",
"+",
"MEM_INST_RETIRED:ALL_STORES"
]

Although this example belongs to the Intel CPU in Table II,
P-MOVE’s configuration mapping strategy offers versatility.
Users can create mappings for a wide range of CPUs, in-
cluding Intel, AMD, PowerPC, ARM, and others, as long as
they are supported by the /ibpfin4 library which is the core
library that enables PCP to monitor PMU events in CPUs. The
Abstraction Layer, which we believe is necessary for modern
profiling, seamlessly generates the formulas for the user-
defined events. These formulas change from vendor to vendor
as well as for every architecture even when the events are the
same. An illustrative use case is presented in Section V-D.

B. Cache-aware Roofline Model in P-MOVE

1) Model construction: For an intuitive visualization
framework, P-MOVE supports the construction of a tailored

CARM model for Intel and AMD microarchitectures. It is
enriched with a set of custom micro-benchmarks in x86
assembly, designed to experimentally assess the realistically
attainable maximum performance of a given system, i.e.,
the sustainable bandwidth for different levels of memory
hierarchy and the peak throughput of computational units.

To assess metrics necessary for CARM roofs, such as
bandwidth and peak FLOPs, we use the Time Stamp Counter
(TSC) to measure the number of clock cycles, detect CPU
frequency, and predefined amount of memory and compute
operations contained in a specific microbenchmark. The
microbenchmarks support various ISA extensions, including
scalar, SSE, AVX2 and AVX512, along with multithreaded
measurements. This allows for further customization of
P-MOVE’s CARM plot based on the prevalent ISA extension
or a specific thread count utilized in the tested applications.

Thanks to KB, CARM microbenchmarks are automatically
configured for a target system, taking into account cache sizes
and available ISAs. To reduce the extensive benchmarking
overhead of all possible thread count combinations, P-MOVE
generates a subset of the most representative thread counts for
the microbenchmarks. Finally, the KB is also used to store all
the microbenchmarking results for each tested system, thus
allowing for a re-construction of the CARM plot without the
need to re-run all the microbenchmarks.

2) Application characterization: Besides the construction
of a CARM plot for a target system, P-MOVE also
provides the CARM-based visualization of the application
execution progress at run-time (live monitoring feature). This
functionality is achieved by automatically configuring PMU
events based on the underlying architecture of a system, in
order to accurately calculate the live Arithmetic Intensity (AI)
and live-GFLOPS of the system. These PMU-based metrics
are sampled on a time-stamp basis and used to plot the
application points in real time on the generated CARM for
the target system. This generated panel is referred to in the
framework as the live-CARM panel, which offers a unique
feature of P-MOVE by delivering real-time feedback on a
target system’s utilization relative to architectural constraints
determined by the already constructed CARM. This
dynamic functionality is achieved through the formulation of
specialized expressions based on hardware events, enabling
the calculation of GFLOPS and Arithmetic Intensity (AI)
tailored to diverse Intel and AMD microarchitectures.

The amount of GFLOPS is determined by mapping and
adding all of the available FLOP events of the target system,
using the PMU remapping capabilities of P-MOVE. As for
the Al, this metric requires the already calculated GFLOPS, as
well as the total amount of memory bytes transferred to/from
the processing cores, which calculation varies across different
generations of Intel and AMD systems. In general, they are
inferred from the ratios of different FP instructions (scalar,
SSE, AVX2, AVX512), which are applied to the total amount
of store and load events measured in the target system.

The live-CARM panel automatically retrieves the
microbenchmarking results (to construct the CARM plot

of the target system) from the KB. By tightly coupling
the application’s live metrics with the CARM plot in the
P-MOVE panel, we facilitate the observation of the relative
performance of an application in real-time, when compared to
the theoretical limits of the architecture it is running on. Fur-
thermore, P-MOVE auto-generates graphs for any hardware
metric configured by the user, which display the values of
selected metrics for the different cores of the target machine,
including a cumulative sum of the events across all cores.

V. EXPERIMENTAL RESULTS

In the host system, we used Grafana v9.4.7, InfluxDB
1.8, MongoDB 6.0.6. For micro-benchmarks, we used
likwid-bench v5.2.2. The target systems used in the
experiments are presented in Table II.

SKX IcL

oS Ubuntu 20.04.3 LTS x86_64 0os Linux Mint 21.1 x86_64

Kernel 5.15.0-73-generic Kernel ~ 5.15.0-56-generic

CPU Intel Xeon Gold 6152 @3.7GHz x2 (44c/88t) CPU Intel i9-11900K @5.1GHz (8c/16t)
Arch Skylake X Arch Ice Lake

Mem 1TB DDR4 @ 2666MHz Mem 64GB DDR4 @ 2133MHz

Env. pep 5.3.6-1 Env. pep 5.3.6-1

CSL | ZEN3

os CentOS Linux release 7.9.2009 (Core) x86_64 | OS Ubuntu 22.04.3 LTS x86_64
Kernel 3.10.0-1160.90.1.e17.x86_64 Kernel 6.2.0-33-generic

CPU Intel Xeon Gold 6258R @2.7GHz (28¢/56t) CPU AMD EPYC 7313 @3GHz (16¢/32t)
Arch Cascade Lake Arch Zen3

Mem 64GB DDR4 @ 3200 MHz Mem 128GB DDR4 @ 2933 MHz

Env. pep 6.1.0-1 Env. pep 5.3.6-1

TABLE II: Specifications of platforms used in the experiments.

A. Throughput and Accuracy

PCP performs sampling instead of recording performance
events over time and reports the sum at the end. There is no
buffer or queue mechanism to keep data points until their inser-
tion into the DB. This theoretically can cause losses in data
points, especially with high-frequency samplings if the DB
insertion time is slower than the sampling time. Moreover, the
sampled metrics are reported over a network, which presents
another bottleneck to database throughput. We performed
throughput experiments with high-frequency samplings using
PCP and InfluxDB to ensure that sampled data points do not
suffer heavy losses while they are inserted into the DB and de-
termine an ideal sampling frequency to set for our framework.

Table III shows the throughput achieved with
pmdaperfevent. Instead of sampling OS files, pmda
perfevent samples PMUs, which may represent another
limiting factor for reaching maximum throughput in high
frequencies. As expected, we observed significant variation
in losses. Besides the missing values, we observed batched
zero values with high frequency. Therefore, we also count the
number of zeros inserted into the DB. With perfevent, we
sampled metrics that are highly unlikely to report zero, e.g.,
UNHALTED_ CORE_CYCLES, INSTRUCTION_RETIRED,
UOPS_DISPATCHED etc. Although, losses with relatively
low frequencies are negligible, more than half of the data
points are lost in transmission on skx and % are lost on icl.
This is due to the correlation between the loss amount and
the domain size; skx has 88 threads, therefore there are 88
data points in each report while this number is 16 for ic1.

Host Freq. #mt Expected Inserted Zeros %L L+Z% Tput A.Tput
2 4 7.04E+03 6.62E+03 0.00E+00 6.0 60 661.8 661.8
2 5 8.80E+03 8.71E+03 0.00E+00 1.0 1.0 8712 8712
2 6 1.06E+04 1.06E+04 0.00E+00 0.0 0.0 1056.0 1056.0
8 4 2.82E+04 2.60E+04 5.84E+02 7.8 9.8 2597.8 25394
8 5 3.52E+04 3.42E+04 7.72E+01 2.8 3.0 34232 34155
skx 8 6 4.22E+04 4.22E+04 0.00E+00 0.0 0.0 42240 42240
32 4 1.13E+05 6.97E+04 3.04E+04 38.1 65.1 6969.6 3927.9
32 5 141E+05 1.14E+05 5.32E+04 19.4 57.2 11352.0 6030.3
32 6 1.69E+05 1.20E+05 5.02E+04 28.8 58.5 12027.8 7012.1
Host Freq. #mt Expected Inserted Zeros %L L+Z% Tput A.Tput
2 4 1.28E+03 1.25E+03 0.00E+00 2.0 2.0 1254 1254
2 5 1.60E+03 1.60E+03 0.00E+00 0.0 0.0 160.0 160.0
2 6 1.92E+03 1.92E+03 0.00E+00 0.0 0.0 1920 1920
8 4 5.12E+03 4.97E+03 0.00E+00 3.0 3.0 496.6 496.6
. 8 5 6.40E+03 6.22E+03 0.00E+00 2.8 2.8 6224 6224
icl 8 6 7.68E+03 7.68E+03 0.00E+00 0.0 0.0 768.0 768.0
32 4 205E+04 2.00E+04 7.26E+03 22 37.6 2003.2 1277.6
32 5 256E+04 2.50E+04 8.78E+03 2.4 36.7 2499.2 1621.2
32 6 3.07E+04 3.00E+04 1.04E+04 23 36.0 30029 19659

TABLE III: #data points expected and observed at the host DB w.r.t.
sampling freq (#samples per second) and #metrics. (A.) Tput inserted
(actual) data points per sec.; L+Z% ratio of actual inserted values to
the expected value.

O skx B icl B zen3

fp_arith_scalar_double unhalted_reference_cycles

0.1+
0.08 4
0.06 1
0.04+
0.02
0':-— TE— T g =

instruction_retired

OTTH-I

16 1
Frequency [1/s]

(Derived) Data Movement

Relative Error
o o o
o o o
S I3 o0

o
o
N

=-—|:|_F

8 16

Fig. 4: Errors btw. sampled metrics and 1ikwid-bench values.
The z-axis shows #samples per second.

To verify PCP’s perf reading accuracy while generating
our performance models, we used likwid-bench [27],
which executes a pre-determined, fixed number of instruction
streams and can report ground truth for events that happened
afterwards. We executed kernels sum, stream, triad,
peakflops, ddot, daxpy while sampling performance,
parsed the likwid-bench output, and compared with
our readings. The relative errors acquired w.r.t. averaged
kernel errors for different frequencies are reported in Fig. 4
(positive/negative values represent overcounting/undercount-

O skx B icl B zen3

8 metrics 12 metrics

2l

20 metrics

Il

16 1
Frequency [1/s]

0.006

0.004
0.002
-0.002
-0.004
T -0.006
o
2-0.008

—0.01

(=}

a

% Oover

16 metrics
0.01

0.008

0.006
0.004
0.002 {::L.l.-
0
1 8

Fig. 5: Overhead caused by profiling six 1ikwid-bench kernels
(executions repeated 5 times, the run-times averaged). The x-axis
shows #samples per second.

ing, respectively). The data volume (in bytes) is calculated
as (MEM_UOPS:LOADS + MEM_UOPS:STORES) X
8 on zen3 and (MEM_INST_RETIRED:LOADS +
MEM_INST_RETIRED:STORES) on skx and icl. The
#FLOPS is calculated as RETIRED_SSE_AVX_FLOPS:
ANY on zen3 and FP_ARITH: SCALAR_DOUBLE on
icl and skx. We found that the measurements are
accurate enough to profile executions and generate coherent
performance models (e.g., live-CARM). The increased error
rates may be due to losses in transmission, or the inherent
noise in PMUs [28].

B. Resource Usage of P-MOVE

PCP employs multiple agents for metric shipment opera-
tions, and as the number of metrics and resolutions increase,
remote system resource usage becomes a concern. We mea-
sured CPU and memory usage of individual PCP agents for
various metric and sampling configurations on a high-capacity
server (skx) with 2 sockets, 88 threads, 1 TB of RAM, and
4 disks. We conducted measurements over 10 minutes on an
empty target system and averaged the results. Figure 6 shows
results for sampling 50 metrics, comprising 15,937 data points
at varying frequencies. The I/O use of PCP agents was negligi-
ble (< 1 KB) and excluded from the results. The host system
had a 100Mbit cabled connection with the target system,
whereas the disk performance was measured at 182 KB/s and
1.2 MB/s for 512B and 8K block-sized writes, respectively.

The PCP agents include pmcd, which manages other agents
and reports their readings; per fevent, which samples PMU
readings via Linux perf interface; pmdalinux, reporting
software-sourced system state metrics like memory usage;

skx, 50 metrics 15937 datapoints
= pmcd © pmdaperfevent ® pmdalinux © pmdaproc ® network

32

16

CPU [%]

1/8 1/16
Frequency [s]

[25.66
[25.66
[25.66
[25.66
[25.66

1/16
1/8

1/4 Memory [MBs]
1/2

1

1/16
1/4
1

))

Network
Traffic [MB/s]

Fig. 6: System resource usage of metric shipment with kernel and
PMU metrics on skx. The value 1/k on the axes implies the case
with k samples per second.

and pmdaproc, which reports per-process metrics like
I/O and memory usage. CPU usage measurements use
the proc.psinfo.utime and proc.psinfo.stime,
whereas memory measurements use the proc.psinfo.rss
metric. Notably, regardless of the reported metrics or sampling
frequency, all agents maintain constant memory usage.
pmdaproc uses more memory due to a larger instance
domain. Except for pmdaproc, all agents are efficient in
resource usage. Overall, P-MOVE employs O per-process
metrics and uses approximately 20 pmdalinux metrics, and
2 pmdaperfevent metrics at 1-second intervals.

CPU and network usage scale linearly with increased
sampling frequency, showing consistent resource usage.
However, one case in Fig. 6 reveals that PCP does not scale
perfectly for 4/8 reports per sec., with varying network traffic.
This is observed in other skx measurements except for 10
metrics. The network and CPU under-utilization suggests
that the framework may stall and fail to sample and report
metrics as desired due to a lack of buffering. High-frequency
sampling exacerbates this issue, leading to outdated or lost
metrics in transmission, consistent with previous observations.

As CPU and network, the disk usage increases with
increased sampling frequency. On a large cluster sampling
with a high frequency can easily overwhelm the KB,
especially in the long term and when the available storage
is small. For these cases, we rely on the retention policy of
InfluxDB which describes for how long the DB keeps data.

ORIGINAL MATRICES ADAPTIVE AUDIKW_1 dielFilterV3real hugetrace-00020 human_genel
3e+10 MKL : MERGE MKL MERGE MKL : MERGE MKL i MERGE MKL : - MERGE 356W
2.5e+10 / / [; 300W
zer10 i 250W
1.5e+10 200W
i
b i
le+10 J 150W
sev9 “‘;‘ / ’ \\\‘ “ ! oW
L/ J \ - bt .
RCM MATRICES ADAPTIVE AUDIKW_1 dielFilterV3real | hugetrace-00020 |human_genel
4.5e+9 MKL : MERGE MKL MERGE MKL IMERGE| MKL i MERGE /~ MERGE 375W
3.5e+9 77‘5/ 300W
2.5e+9 225W
1.5e+9 150W
5e+9 7774/ : 4 75W
’ 7

—SCALAR DOUBLE INSTRUCTIONS —AVX512 DOUBLE INSTRUCTIONS — TOTAL MEMORY INSTRUCTIONS

"~ RAPL POWER PACKAGE

Fig. 7: Monitoring live performance events during SpMV execution on Intel CSL system

C. Time Overhead

During HW performance event samplings, PCP-runs on
the target system and performance monitoring registers
are sampled. Therefore kernel run-time may be affected
negatively. To measure the effect of sampling, we ran the
same micro-benchmarks with/without sampling and measured
the change in completion times. The overhead caused by
sampling can be seen in Figure 5. Surprisingly, negative
overheads are observed, which we explain as overhead added
by sampling is smaller than the variance observed between
different runs of the same kernel. This is expected since the
positive overheads are also measured at 0.01%. A similar
negative overhead is reported by [29] even in a larger setting.
However, a meaningful skew towards positive overhead is
observed with increasing frequency.

D. Monitoring Live Performance Events

To showcase the live monitoring capabilities of P-MOVE,
we execute two state-of-the-art algorithms for Sparse Matrix
Vector Multiplication (SpMV), i.e., Intel MKL [30] and
Merge [31], on the Intel CSL system presented in Table
II. We selected five sparse matrices from the SuiteSparse
collection [32], as presented in Table IV, which cover a range
of matrices from different scientific domains, characteristics,
dimensions, and number of non-zero elements. Both SpMV
algorithms are performed on the original (unaltered) matrices,
as well as on their reordered versions using Reverse Cuthill-
McKee (RCM) [33]. For each combination of the sparse
matrices, algorithms and reordering, the performance data is
collected at runtime.

The results are presented in Fig. 7, with the original
(top part) and RCM-reordered (bottom part) matrices. We
subject each matrix to Intel MKL, followed by the Merge
SpMV algorithm. For all cases, a set of PMU events were
collected, including SCALAR_DOUBLE_ INSTRUCTIONS,
AVX512__ DOUBLE_INSTR., TOTAL_MEMORY_INSTR.,

Name Group Rows Cols Nnz
adaptive DIMACSIO0 6,815,744 6,815,744 | 27,2M
audikw_1 GHS_psdef 943,695 943,695 | 77,TM
dielFilterV3real Dziekonski 1,102,824 1,102,824 89,3M
hugetrace-00020 | DIMACSIO | 16,002,413 | 16,002,413 | 48,0M
human_genel Belcastro 22,283 22,283 24T
TABLE IV: Sparse matrices used in the experiment.

and RAPL_POWER_PACKAGE. Their evolution during
execution is depicted in Fig. 7. As can be observed, there is
a noticeable difference in the overall execution time required
to process all five original (top) and reordered (bottom)
matrices, where the reordered ones took about 22% less time
for processing. This effect indicates the positive influence
of reordering on improved data locality, which subsequently
results in substantial performance improvements.

By focusing on the evolution of collected PMU events
presented in Fig. 7, one can observe that AVX512_DP_FP
events are only manifested for Intel MKL, while
SCALAR_DP_FP appear during the Merge algorithm. This
is due to the ability of MKL SpMV to take advantage of the
Intel CPU’s AVX512 capabilities, while Merge SpMV only
exercised the scalar units (note the drop in AVX512 and the
increase in scalar FP instructions at the vertical dashed lines,
i.e., the points in time when MKL finishes and Merge starts).

During MKL, the measures for RAPL,_POWER_PACKAGE
and TOTAL_ MEMORY_ INSTRUCTIONS are lower than for
Merge. This corroborates the fact that the codes using higher
SIMD ISA may provoke reduced instruction counts when
compared to their scalar counterparts (e.g., AVX512 load/store
instructions involve 64-byte data transfer versus scalar memory
instructions that operate on 8 bytes of data). This phenomenon,
as well as data locality in different memory levels achieved
with different algorithms and reordering, can provoke
significant power consumption variations, as shown in Fig. 7.

Live Cache Aware Roofline Model

1024
512
256 " [
w128 _— .- T
3 g4l MKL SpMV._ | |
E 32 =l
2 16 i=astd | RCM MATRIX
R RS
5 2 .- .
"g N ————QRIGINAL MATRIX
[
%0.5 !
0.25
® 0.0625 0.125 0.25 0.5 1 2 4 8 16

——11==L2 =-=L3 ----.DRAM Arithmetic Intensity

Fig. 8: Live-CARM during SpMV execution

E. Live-CARM feature

To showcase the live-CARM feature, we analyze the
performance differences between MKL and Merge SpMV ,
as well as three likwid benchmarks on the Intel CSL system
(see Tab. II).

SpMV Execution Profiling: Fig. 8 presents the live-CARM
panel during both Intel MKL and Merge SpMV for
hugetrace-00020 (see Tab. IV) in its original and
RCM-reordered form. The live-CARM timestamps of each
execution phase are identified by the colored square that
contains them, namely: pink square — Intel MKL; and orange
square — Merge, while for both algorithms the blue and green
squares denote the executions corresponding to the original
and RCM-reordered matrix, respectively. As observed in
the CARM plot, for each algorithm, the RCM reordering
yielded higher performance, while we can also observe that
the Intel MKL SpMV provides higher performance than the
Merge SpMV (mainly due to its ability to exploit AVX512
SIMD capability). Furthermore, this study showcases how
the Live-CARM dashboard can be used to make intuitive and
insightful performance analyses across different applications
and their execution phases during the run-time, as it allows
pinpointing the data locality in different memory levels.
Benchmark Execution Profiling: Live-CARM can also be
used to profile benchmarks, by directly comparing the
execution of a benchmark against the live-CARM roofs, i.e.,
the performance upper-bounds attainable on a target platform
for different memory levels and compute units. This analysis
provides a general idea on the ability of executed applications
to fully exploit the capabilities of underlying hardware re-
sources. For this purpose, various benchmarks from the likwid
tool [27] (Triad, PeakFlops, and DDOT) were considered,
with corresponding live-CARM reports presented in Fig. 9.

The Triad benchmark (see orange points enclosed with
green box) is a memory-bound benchmark with a theoretical
Al of 0.625, which is accurately captured by the live-CARM
in Fig. 9. As can be seen, the performance of this kernel
approaches the L2 roof, but it is unable to surpass it since
the workload size does not fit in the 32Kb L1 cache. The
PeakGflops benchmark (red dots enclosed with the dark blue

1024 Live Cache Aware Roofline Model

o
Py
N

PeakGflops
£

AAAAAAA 1. . . 0
..... Initialization and
*** Transition

X Reported DDOT Benchmark
X Reported Triad Benchmark
X Reported PeakFlops Benchmark

© 0.0625 0.0125 0.25 0.5 1 2 4 8 16
] e 2] = 3 aemee DRAM Arithmetic Intensity

BN
B w o N O
o N b O O

N &

o R

o Performance [GFlops/s]
]

N
o

Fig. 9: Live-CARM during Likwid benchmarks execution

box) is designed to reach the peak FP performance. With a
theoretical Al of 2, this benchmark reports a performance very
close to the one obtained with the CARM microbenchmarks
(the application points aligned with the horizontal live-
CARM roof in Fig. 9). Finally, similarly to Triad, the DDOT
benchmark, is a memory-bound kernel that utilizes smaller
problem sizes, thus able to fit in the L1 cache. As presented
in Fig. 9 (see red dots with a light blue box), the theoretical
DDOT AI of 0.125 is accurately captured by the live-CARM,
with the performance surpassing the L2 roof, and approaching
the maximum performance of the architecture.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose P-MOVE with an HPC-specific
ontology, a knowledge base created on this ontology and
proposed methods to parse the KB in order to detect per-
formance variations/degradations in HPC environments. We
demonstrated its lightweight remote performance profiling
capabilities and presented its accuracy in the presence of
transmission losses on high-frequency data over the network.
Furthermore, it is equipped with the tools to compare perfor-
mance metrics obtained from different systems which enables
a heterogeneous performance analysis environment.

Overall, with P-MOVE, we aim to enhance the
performance analysis and explainability landscape in
multi-core architectures. Future endeavours include gathering
data from various systems and utilizing the dataset collected
via SUPERFDB, the global performance database, for LLM
training and building an Al tool for performance optimization.
The design, as outlined in the paper, enables a straightforward
extension of the framework from single-node servers to
clusters. Based on the proposed design in this paper, we
are on the verge of developing a cluster-level P-MOVE that
encapsulates meticulous performance analysis and monitoring
capabilities, in conjunction with communication telemetry
and job-specific metadata emitted from HPC clusters.

REFERENCES

[1] B. Aksar, B. Schwaller, V. J. L. Omar Aaziz, J. Brandt, M. Egele, and
A. K. Coskun, “E2EWatch: An end-to-end anomaly diagnosis framework

for production HPC systems”,” in Euro-Par 2021: Parallel Processing.
Cham: Springer International Publishing, 2021, pp. 70-85.

[3]

[4]
[5]

[6]

[7]

[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

J. M. Brandt, T. Tucker, and A. C. Gentile, “Lightweight Distributed
Metric Service (LDMS): Run-time Resource Utilization Monitoring.”
Sandia National Lab. (SNL-CA), Livermore, CA (United States);
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States),
Tech. Rep. SAND2013-6521C, Aug. 2013. [Online]. Available:
https://www.osti.gov/biblio/1106397

A. M. Agelastos, B. A. Allan, J. M. Brandt, P. Casella, j. enos,
J. Fullop, A. C. Gentile, S. T. Monk, N. Naksinehaboon, J. B.
Ogden, M. Rajan, M. Showerman, J. O. Stevenson, N. Taerat, and
T. O. Tucker, “The Lightweight Distributed Metric Service: A Scalable
Infrastructure for Continuous Monitoring of Large Scale Computing
Systems and Applications.” Sandia National Labs Albuquerque, NM
and Livermore, CA (United States), Tech. Rep. SAND2014-19868C,
Nov. 2014. [Online]. Available: https://www.osti.gov/biblio/1315267
Nagios, “Nagios,” https://www.nagios.org/, 2022, accessed: 2022-12-12.
S. Roy, A. C. Konig, I. Dvorkin, and M. Kumar, “PerfAugur: Robust
diagnostics for performance anomalies in cloud services,” in 2015 IEEE
31st International Conference on Data Engineering, 2015, pp. 1167—
1178.

C. Steinmetz, A. Rettberg, F. G. C. Ribeiro, G. Schroeder, and C. E.
Pereira, “Internet of things ontology for digital twin in cyber physical
systems,” in 2018 VIII Brazilian Symposium on Computing Systems
Engineering (SBESC), 2018, pp. 154-159.

T. Deng, K. Zhang, and Z.-J. M. Shen, “A systematic review of a digital
twin city: A new pattern of urban governance toward smart cities,”
Journal of Management Science and Engineering, vol. 6, no. 2, pp.
125-134, 2021.

Ganglia, “Monitoring
//ganglia.sourceforge.net/
“Cluster cockpit,” https://www.clustercockpit.org/, acc. on 30 Sep 2023.
J. Xin, C. Afrasiabi, S. Lelong, J. Adesara, G. Tsueng, A. I. Su, and
C. Wu, “Cross-linking BioThings APIs through JSON-LD to facilitate
knowledge exploration,” BMC Bioinformatics, vol. 19, 02 2018.

X. Chen, S. Dallmeier-Tiessen, A. Dani, R. Dasler, J. D. Fernandez,
P. Fokianos, P. Herterich, and T. Simko, “Cern analysis preservation:
A novel digital library service to enable reusable and reproducible
research,” in Research and Advanced Technology for Digital Libraries.
Cham: Springer International Publishing, 2016, pp. 347-356.

M. Friedemann, K. Wenzel, and A. Singer, “Linked data architecture
for assistance and traceability in smart manufacturing,” MATEC Web of
Conferences, vol. 304, p. 04006, 01 2019.

N. Ding and S. Williams, “An instruction roofline model for GPUs,” in
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), 2019, pp. 7-18.

T. Koskela, Z. Matveev, C. Yang, and A. e. a. Adedoyin, “A novel
multi-level integrated roofline model approach for performance charac-
terization,” in 33rd Int. Conf, ISC High Performance 2018, Frankfurt,
Germany, June 24-28, 2018, 33. Springer, 2018, pp. 226-245.

J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. 1EEE, 2013, pp. 661-672.

A. Ilic, F. Pratas, and L. Sousa, “Beyond the roofline: Cache-aware
power and energy-efficiency modeling for multi-cores,” IEEE Transac-
tions on Computers, vol. 66, no. 1, pp. 52-58, 2016.

——, “Cache-aware roofline model: Upgrading the loft,” IEEE Com-
puter Architecture Letters, vol. 13, no. 1, pp. 21-24, 2013.

D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth,
M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the roofline
performance model to the Intel Xeon Phi Knights Landing processor,”
in ISC High Performance 2016 International Workshops, Frankfurt,
Germany, June 19-23, 2016, Revised Selected Papers 31. Springer,
2016, pp. 339-353.

D. Unat, C. Chan, W. Zhang, S. Williams, J. Bachan, J. Bell, and J. Shalf,
“Exasat: An exascale co-design tool for performance modeling,” The Int.
J. of High Perf. Computing Applications, vol. 29, no. 2, pp. 209-232,
2015.

D. Marques, A. Ilic, Z. A. Matveev, and L. Sousa, “Application-driven
cache-aware roofline model,” Future Generation Computer Systems, vol.
107, pp. 257-273, 2020.

“Performance co-pilot,” https://pcp.io/, accessed on 30 Sep 2023.

K. Milenkovié, S. Mayer, K. Diwold, and J. Zehetner, “Enabling
knowledge management in complex industrial processes using semantic
web technology,” in Proceedings of the 2019 International Conference
on Theory and Applications in the Knowledge Economy, Jul. 2019.

system,” 2022. [Online]. Available: http:

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

T. Rohl, J. Eitzinger, G. Hager, and G. Wellein, “Likwid monitoring
stack: A flexible framework enabling job specific performance monitor-
ing for the masses,” in 2017 IEEE Int. Conf. on Cluster Comp., 2017,
pp. 781-784.

T. S. Team. Smartmontools. Accessed on 5th October 2023. [Online].
Available: https://www.smartmontools.org/

J. McCalpin, “Memory bandwidth and machine balance in high perfor-
mance computers,” [EEE Tech. Comm. on Comp. Arch. Newsletter, pp.
19-25, 1995.

J. Dongarra and M. A. Heroux, “Toward a new metric for ranking HPC
systems,” Sandia Report, SAND2013-4744, vol. 312, p. 150, 2013.

T. Rohl, J. Treibig, G. Hager, and G. Wellein, “Overhead analysis
of performance counter measurements,” in 2014 43rd International
Conference on Parallel Processing Workshops, 2014, pp. 176-185.

V. Weaver, D. Terpstra, and S. Moore, “Non-determinism and overcount
on modern hardware performance counter implementations,” in Prof. of
the IEEE Int. Symp. on Perf. Analysis of Systems and Software, 04 2013,
pp. 215-224.

A. Nowak and G. Bitzes, “The overhead of profiling using
PMU hardware counters,” Jul. 2014. [Online]. Available: https:
//doi.org/10.5281/zenodo.10800

E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and
Y. Wang, Intel Math Kernel Library. Cham: Springer International
Publishing, 2014, pp. 167-188. [Online]. Available: https://doi.org/10.
1007/978-3-319-06486-4_7

D. Merrill and M. Garland, “Merge-based SpMV using the CSR storage
format,” Acm Sigplan Notices, vol. 51, no. 8, pp. 1-2, 2016.

T. Davis. Sparse matrix collection. Accessed on 5th October 2023.
[Online]. Available: https://sparse.tamu.edu/

E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th national conference, 1969,
pp. 157-172.

