
CPU- and GPU-initiated Communication Strategies for Conjugate
Gradient Methods on Large GPU Clusters

James D. Trotter
james@simula.no

Simula Research Laboratory
Oslo, Norway

Sinan Ekmekçibaşı
sekmekcibasi23@ku.edu.tr

Koç University
Istanbul, Turkey

Doğan Sağbili
dsagbili17@ku.edu.tr

Koç University
Istanbul, Turkey

Johannes Langguth
langguth@simula.no

Simula Research Laboratory
Oslo, Norway

University of Bergen
Bergen, Norway

Xing Cai
xingca@uio.no

University of Oslo
Oslo, Norway

Simula Research Laboratory
Oslo, Norway

Didem Unat
dunat@ku.edu.tr
Koç University
Istanbul, Turkey

Abstract
The Conjugate Gradient (CG) method is a key building block in
numerous applications, yet its low computational intensity and
sensitivity to communication overhead make it difficult to scale
efficiently on multi-GPU systems. In light of recent advances in
multi-GPU communication technologies, we revisit CG paralleliza-
tion for large-scale GPU clusters.

This work presents scalable CG and pipelined CG solvers target-
ing NVIDIA and AMD GPUs, using GPU-aware MPI, NCCL/RCCL
and NVSHMEM to implement both CPU- and GPU-initiated com-
munication schemes. We also introduce a monolithic variant that of-
floads the entire CG loop to the GPU, enabling fully device-initiated
execution via NVSHMEM. Optimizations across all variants reduce
unnecessary data transfers and synchronization overheads; the
GPU-initiated variant eliminates CPU involvement altogether.

We benchmark our implementations on NVIDIA- and AMD-
based supercomputers using SuiteSparse matrices and a real-world
finite element application. By avoiding data transfers and syn-
chronization bottlenecks, our single-GPU implementations achieve
8–14% performance gains over state-of-the-art solvers. In strong
scaling tests on over 1,000GPUs, we outperform existing approaches
by 5–15%.

While CPU-initiated variants remain favorable due to a lack of
vendor supported device-side computational kernels and subopti-
mal NVSHMEM configurations at the clusters, the strong scaling
properties of the GPU-initiated CG variant indicates that it will
be highly competitive at even larger GPU counts and with further
tuning.

CCS Concepts
• Mathematics of computing → Mathematical software; •
Computingmethodologies→Parallel algorithms;Distributed
algorithms.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Keywords
GPU, Conjugate Gradient, CUDA, HIP, GPU-aware MPI, NCCL,
RCCL, NVSHMEM

1 Introduction
The Conjugate Gradient (CG) method [27] is a widely used itera-
tive solver for large, sparse, symmetric and positive-definite linear
systems, forming a critical building block in many scientific and
industrial applications. Its core operations, such as vector additions,
dot products, and sparse matrix-vector multiplications, are all low
in computational intensity, making CG highly sensitive to commu-
nication and synchronization overhead and challenging to scale on
multi-GPU systems where communication bandwidth lags behind
GPU compute performance.

Recent advancements in communication technologies have intro-
duced a range of options for multi-GPU programming [18, 53]. Pro-
grammers can leverage GPU-aware MPI, NCCL/RCCL, and NVSH-
MEM/rocSHMEM, all supporting direct GPU-to-GPU communica-
tion initiated from the CPU. Further enhancements, such as GPUDi-
rect RDMA [43], enable low-latency transfers, while device-initiated
communication [25] reduces CPU involvement and synchronization
overheads. Given these developments, it is time to revisit multi-
GPU implementations of CG. The aim is to conduct comparative
studies that can provide practical guidance on communication li-
brary choices and highlight key trade-offs in implementing this
critical solver for the HPC community.

This paper presents scalable multi-GPU CG solvers targeting
both NVIDIA and AMD platforms. We implement and evaluate vari-
ants using CPU- and GPU-initiated communication via GPU-aware
MPI, NCCL, RCCL, and NVSHMEM. Each variant supports both
CG and pipelined CG algorithms [21], with CUDA and HIP imple-
mentations for NVIDIA and AMD GPUs, respectively. To provide
a context for our multi-GPU strategies, we begin with a baseline
single-GPU CG implementation, emphasizing our improvements
to reduce CPU-GPU synchronization. In our multi-GPU designs,
communication is initiated either from the host CPU (MPI, NCCL,
or RCCL) or directly on the GPU (via NVSHMEM).

The CPU-initiated approach aligns with typical multi-GPU linear
solvers, which are based on GPU-aware MPI. In addition, we also

1

https://orcid.org/0000-0003-4498-020X
https://orcid.org/0009-0003-5377-6339
https://orcid.org/0000-0002-9603-2466
https://orcid.org/0000-0003-4200-511X
https://orcid.org/0000-0003-3706-4414
https://orcid.org/0000-0002-2351-0770
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


James D. Trotter, Sinan Ekmekçibaşı, Doğan Sağbili, Johannes Langguth, Xing Cai, and Didem Unat

present a novel adoption of the NCCL/RCCL collective communi-
cation libraries and GPU streams for CPU-initiated communication
in multi-GPU CG. The purpose is to avoid communication-related
synchronisation points between CPU and GPU and thus improve
scalability.

Going even further, we develop a new, monolithic version of
multi-GPU CG, where the entire CG loop is offloaded to the GPU in
a single kernel. Moreover, we propose a scalable, one-sided commu-
nication scheme for the underlying irregular point-to-point commu-
nication, where NVSHMEM is used to initiate the communication
directly from the GPU kernel, without involving the CPU.

We conduct a rigorous performance evaluation on three super-
computers: LUMI, MareNostrum 5, and Wisteria. Our assessment
uses matrices from SuiteSparse [17], and augments these with matri-
ces for large-scale tests, including a case from 3D cardiac modelling
simulations on a realistic heart mesh.

Our paper makes the following contributions:
• By carefully avoiding GPU-to-CPU data transfer and syn-

chronisation, we improve the performance of CG on a sin-
gle GPU by up to 8% on AMD MI250X, 14 % and 11% on
NVIDIA A100 and H100, respectively.

• The single-GPU improvements are shown to carry over to
typical multi-GPU implementations of CG with GPU-aware
MPI, outperforming a state-of-the-art numerical library by
7–14 % on 1024 AMD MI250X GPUs and 256 NVIDIA H100
GPUs, the largest number that we had access to for this
work.
• We compare the performance of CG (and pipelined CG)

when GPU-aware MPI and NCCL/RCCL are used for intern-
ode GPU-to-GPU communication, showing that NCCL is
highly mature and often competitive with GPU-aware MPI,
especially when collective Allreduce operations dominate
the performance. In contrast, RCCL significantly underper-
forms, primarily due to inefficient Allreduce operations for
small message sizes.

• We develop a scalable, monolithic CG implementation with
GPU-initiated communication that shows strong scaling
properties equal to or better than CG with CPU-initiated
communication (on 256 GPUs). We believe this will be the
best alternative at even larger scales, after further tuning of
the underlying SpMV kernel and NVSHMEM configuration.

2 Background
2.1 Multi-GPU communication libraries
To communicate between GPUs, there are multiple libraries avail-
able from both GPU vendors and research groups. In this section,
we discuss the most widely used ones.

2.1.1 GPU-aware MPI. Due to the widespread use of MPI in the
HPC community, early GPU communication libraries extended
MPI to support efficient GPU-to-GPU communication, eliminating
unnecessary device-to-host copies. This capability, known as GPU-
aware MPI, allows passing GPU memory pointers directly to MPI
functions, enabling efficient data transfers via GPUDirect RDMA for
NVIDIA GPUs or ROCm RDMA for AMD GPUs [2, 43]. GPU-aware
MPI is supported by several implementations, including OpenMPI,

MPICH, and MVAPICH2 [28, 47, 48, 51, 54–56]. However, a limi-
tation of GPU-aware MPI is its lack of awareness of GPU-specific
constructs, such as streams, which are critical for overlapping com-
putation and communication. Recent efforts have aimed to bridge
this gap by integrating GPU streams and other GPU features into
MPI [24, 26, 41, 42].

2.1.2 Collective Communication Libraries. Multiple GPU vendors
offer topology-aware collective primitives for inter-GPU communi-
cation that we term as GPU Collective Communication Libraries
(GPU-CCL). These libraries have been designed by vendors to be
natively compatible with their own GPU programming model via
pipelining operations to a GPU streamwith their host-side API. Due
to their performance and built-in topology awareness, GPU-CCLs
have been integrated into several state-of-the-art deep learning
frameworks, including Pytorch and Tensorflow [57] as a commu-
nication backend. Prominent examples include NCCL (NVIDIA),
RCCL (AMD), and oneCCL (Intel) [6, 31, 45].

2.1.3 One-sided GPU Communication. For point-to-point commu-
nication, the libraries discussed above adopt a two-sided communi-
cation model, where both sender and receiver actively participate
in the data exchange. In contrast, one-sided communication allows
only one party, either the sender or the receiver, to initiate and
complete the transfer, while the other side remains passive. This
model is implemented by Partitioned Global Address Space (PGAS)
libraries such as OpenSHMEM and was introduced into the MPI
standard starting from version 2.0.

Recently GPU vendors have provided implementations of the
OpenSHMEM specification for GPUs, specifically NVIDIA’s NVSH-
MEM [44], AMD’s rocSHMEM [3] and Intel’s SHMEM [30]. These
GPU-based SHMEM libraries extend the OpenSHMEM API specifi-
cation, by providing stream-aware host-side APIs and device-side
APIs, to perform communication at a granularity involving single
GPU threads, warps or thread blocks.

2.1.4 GPU-initiated communication. Recent developments in inter-
connect technologies from GPU vendors have allowed support for
the InfiniBand verbs interface on GPUs. The GPU SHMEM libraries
are thus able to issue inter-node communication from the GPU di-
rectly to the NIC, bypassing the CPU entirely [1, 46, 49, 50]. Unlike
GPU-aware MPI and NCCL/RCCL, where GPU-to-GPU communi-
cation is still issued from the CPU, this allows true GPU-initiated
communication which can reduce the need for CPU-GPU synchro-
nization.

In this paper, we focus on GPU-initiated communication with
NVSHMEM, which is enabled by one of two underlying communi-
cation methods, known as IBRC and IBGDA (Infiniband GPUDirect
Async) [49]. Only the latter can be used in a mode where the GPU
is truly autonomous by explicitly disabling the use of a CPU proxy
thread. Otherwise, the proxy thread is used in IBGDA by notifying
the NIC and GPU at various times during communication. However,
we found that the system configurations of large GPU clusters, such
as BSC’s MareNostrum 5 and CINECA’s Leonardo, do not currently
support IBGDA. A smaller cluster, Wisteria, which is used in our
experiments in Section 4, does support IBGDA, but only in the
CPU proxy thread mode. Ultimately, we resorted to IBRC also in

2



CPU- and GPU-initiated Communication Strategies for Conjugate Gradient Methods on Large GPU Clusters

this case, because IBGDA showed worse performance for collective
communication with small message sizes.

We expect that AMD’s rocSHMEM can be used for similar one-
sided, GPU-initiated communication, but it is not supported on
LUMI, the AMD-based system used in our experiments (Section 4.1).

2.2 Conjugate gradient methods
Solving large systems of linear algebraic equations, in the form
of 𝐴𝑥 = 𝑏, is a central component in numerous applications of
computational science. The system matrix𝐴 is often ill-conditioned
and sparse (with very few nonzeros), so iterative linear solvers
constitute the most suitable strategy. The conjugate gradient (CG)
algorithm [27] is the best iterative solver when 𝐴 is symmetric and
positive-definite. CG is also important because its three compu-
tational kernels: vector addition (AXPY), dot-product (DOT) and
sparse matrix-vector multiplication (SpMV), are the building blocks
of other powerful iterative solvers that are based on Krylov sub-
spaces.

Each iteration of the original CG algorithm consists of three
AXPYs, two DOTs and one SpMV. All these kernels have very low
computational intensity, making parallel implementations of CG
very sensitive to the communication overhead. Scaling CG across
many GPUs is notoriously difficult due to the imbalance between
high GPU compute performance and relatively slow inter-GPU
communication.

We also include a pipelined CG variant [21] in this study. The
pipelined version aims to reduce the number of global synchroniza-
tions (e.g., due to MPI_Allreduce) at the cost of additional computa-
tions. We note that there are many variants of pipelined CG [12–14]
and s-step CG [9–11]. However, our goal is not to provide a compre-
hensive survey, but rather to focus on two widely used CG variants
and evaluate their parallel scalability in the context of modern
multi-GPU programming.

3 Implementation
This section describes in detail our multi-GPU CG implementations,
which are based on CPU- and GPU-initiated communication. The
CPU-initiated variants include implementations using GPU-aware
MPI, NCCL, and RCCL, while the GPU-initiated variant is built
on NVSHMEM. Each of these variants is implemented for both
the standard and pipelined CG algorithms. To ease the discussion,
we first review a typical single-GPU version with an emphasis on
CPU-GPU synchronisation and data transfers.

3.1 Single-GPU implementation of CG
A typical GPU implementation of CG (see Listing 1) offloads AXPY
(lines 10, 11 & 16), DOT (lines 3, 7 & 12) and SpMV (lines 2 & 6) to
the GPU. The other operations, such as computing the scalars 𝛼 and
𝛽 (lines 9 and 15) and testing for convergence (line 14), are usually
performed on the host CPU. This approach is the basis for the CG
implementation in the widely used numerical library PETSc [40].

Optimised DOT and AXPY kernels are available from vendor
BLAS libraries, i.e., cuBLAS [16] and hipBLAS [4]. Moreover, cuS-
PARSE [15] and hipSPARSE [5] provide optimised SpMV kernels
for common storage formats, such as compressed sparse row (CSR).

1 Input: 𝑨, 𝒃, 𝒙0, 𝜖

2 GPU SpMV: 𝒓0 ← 𝒃 − 𝑨 ∗ 𝒙0
3 GPU DOT: 𝜌0 ← 𝒓0 · 𝒓0; copy 𝜌0 from GPU to CPU
4 CPU SYNC: Wait until 𝜌0 is copied from GPU
5 GPU COPY: 𝒔 ← 𝒓0
6 For 𝑘 = 1, 2, . . . Do
7 GPU SpMV: 𝒕 ← 𝑨 ∗ 𝒔
8 GPU DOT: 𝛾 ← 𝒔 · 𝒕; copy 𝛾 from GPU to CPU
9 (*) CPU SYNC: Wait until 𝛾 is copied from GPU
10 (*) CPU: 𝛼 ← 𝜌𝑘−1/𝛾
11 (*) GPU AXPY: 𝒙𝑘 ← 𝛼𝒔 + 𝒙𝑘−1
12 GPU AXPY: 𝒓𝑘 ← −𝛼𝒕 + 𝒓𝑘−1
13 GPU DOT: 𝜌𝑘 ← 𝒓𝑘 · 𝒓𝑘; copy 𝜌𝑘 from GPU to CPU
14 CPU SYNC: Wait until 𝜌𝑘 is copied from GPU
15 CPU: If

√
𝜌𝑘 ≤ 𝜖

√
𝜌0 Then Exit (Converged)

16 (*) CPU: 𝛽 ← 𝜌𝑘/𝜌𝑘−1
17 (*) GPU AXPY: 𝒔 ← 𝛽𝒔 + 𝒓𝑘
18 End For

Listing 1: Pseudo-code for a typical single-GPU CG, e.g., as
implemented by PETSc. Lines marked with (*) are modified
in our version of CG (see Section 3.1.2).

The CSR SpMV kernel provided by cuSPARSE is based on the merge-
based SpMV algorithm [38], which has better load-balancing prop-
erties compared to a naive implementation.

3.1.1 Synchronisation. GPU kernels in CUDA/HIP execute asyn-
chronously, so explicit synchronisation is needed in Listing 1 before
the CPU can proceed with operations that depend on results pro-
duced by the GPU. Specifically, synchronisation is needed after the
DOTs that compute 𝛾 (line 8) and 𝜌𝑘 (line 13).

3.1.2 Our improvements. The synchronisation point associated
with 𝛾 (line 8) can be eliminated, if 𝛾 is retained in the GPU device
memory throughout the computation. Instead of returning the
result of the DOT kernel to the CPU, which implies a device-to-host
copy, we use cublasSetPointerMode in cuBLAS (and similarly for
hipBLAS) so that 𝛾 remains in the GPU device memory. However,
doing so forces all scalar coefficients to reside in the GPU device
memory, particularly those used as inputs to the AXPY kernels (e.g.,
𝛼 and 𝛽). We propose to fuse the computation of 𝛼 and 𝛽 with the
relevant AXPY kernels, rather than launching separate kernels to
compute those single scalar values.

We thus obtain a single-GPU implementation of CG, where only
a single synchronisation point is needed (line 13), i.e., prior to
the convergence test performed by the host. Furthermore, only a
single scalar value, 𝜌𝑘 , which represents the square of the (implicit)
residual norm, must be transferred to the host in each iteration.
Here, we delay the AXPY kernel that updates the solution vector
(line 11) until after the DOT kernel on line 13 and use GPU streams
to asynchronously overlap it with the copy of 𝜌𝑘 to the host.

3.2 Multi-GPU parallelization
3.2.1 Partitioning. To use CG in a distributed-memory parallel
setting with multiple GPUs, one must first distribute the work and
the associated data among the GPUs. A scalable algorithm must
1) distribute the matrix 𝐴, right-hand side 𝑏, and solution vector 𝑥 ,

3



James D. Trotter, Sinan Ekmekçibaşı, Doğan Sağbili, Johannes Langguth, Xing Cai, and Didem Unat

2) balance the computational load between GPUs, and 3) minimise
parallel overhead due to communication and synchronisation. We
follow common practice (e.g., PETSc [7], Hypre [20]) by distribut-
ing the matrix rowwise and partitioning the vectors accordingly.
Specifically, we use the METIS graph partitioner [33] to distribute
the matrix rows, which promotes load balance through constraints
and reduces communication volume by minimising the edge cut of
the unweighted, undirected graph corresponding to the symmetric,
sparse matrix 𝐴.

3.2.2 Communication. Two kinds of communication are needed in
the multi-GPU CG algorithm. First, since the vectors are distributed,
every dot product must be followed by a collective communication
in the form of an allreduce to sum up the partial results from all
GPUs. Second, SpMV operations require an additional communica-
tion step before they can be carried out on each GPU.

Consider an SpMV 𝑦 = 𝐴 ∗ 𝑥 and a rowwise matrix partitioning.
Each GPU possesses a partial matrix 𝐴(𝑝 ) and is responsible for
computing a partial output vector 𝑦 (𝑝 ) , both of which contain
values only from the rows that they were assigned. On any GPU,
a given value of 𝑥 is only needed if the corresponding column of
its partial sparse matrix 𝐴(𝑝 ) is nonzero. As a result, the typical
communication pattern that arises in connection with SpMV is an
irregular point-to-point communication that depends on the sparsity
pattern of the underlying matrix.

In light of these communication requirements, a common con-
vention is to divide amatrix𝐴(𝑝 ) into two parts,𝐴(𝑝 ) = 𝐴(𝑝 )+𝐴(𝑝 ) ,
and then perform a distributed SpMV in three steps:

(1) Multiply the local part 𝐴(𝑝 ) of the matrix with the local
part of 𝑥 that is readily available without the need for com-
munication.

(2) Perform point-to-point communication to receive 𝑥 , denot-
ing values of 𝑥 needed to perform the remaining SpMV.

(3) Multiply the remaining part𝐴(𝑝 ) of thematrix with 𝑥 , using
the values received during the point-to-point communica-
tion.

This method furthermore provides a possibility to overlap the com-
munication in step 2 with the SpMV computation in step 1, poten-
tially hiding the communication cost. The overlapping strategy is
used in PETSc and in our own CG implementations, as explained
in further detail below.

3.3 CG with host-initiated communication
The usual programming model with multiple GPUs requires the
host CPU to retain control over execution and initiate communica-
tion (in addition to launching GPU kernels andmanaging CPU-GPU
data transfers). In this subsection, we discuss our implementation
of distributed-memory parallel CG using host-initiated commu-
nication with GPU-aware MPI or NCCL/RCCL. A pseudo-code is
shown in Listing 2. Partial matrices and vectors are denoted with
a superscript, e.g., 𝑨(𝑝 ) and 𝒃 (𝑝 ) , but we omit the superscript for
the auxiliary vectors (i.e., 𝒓 , 𝒔 and 𝒕) for the sake of readability.

SpMV, AXPY and DOT kernels are now performed by GPUs on
their local matrices and vectors. The scalars 𝛼 , 𝛽 and 𝛾 remain in
GPU memory throughout, and the computation of the former two
is fused with AXPY kernels (lines 17, 21 and 24). CPUs launch all

1 Input: 𝑨(𝑝 ) = 𝑨̄(𝑝 ) + 𝑨̂(𝑝 ), 𝒃 (𝑝 ), 𝒙
(𝑝 )
0 , 𝜖

2 GPU SpMV: 𝒓0 ← 𝒃 (𝑝 ) − 𝑨(𝑝 ) ∗ 𝒙 (𝑝 )0
3 GPU DOT: 𝜌

(𝑝 )
0 ← 𝒓0 · 𝒓0

4 (+) CPU SYNC: Wait until 𝜌
(𝑝 )
0 is ready on GPU

5 ALLREDUCE: 𝜌0 ←
∑

𝑝 𝜌
(𝑝 )
0

6 GPU COPY: 𝒔 ← 𝒓0
7 For 𝑘 = 1, 2, . . . Do
8 GPU PACK: Pack 𝒔 for sending
9 (+) CPU SYNC: Wait until 𝒔 is ready on GPU
10 P2P COMM: Start sending 𝒔 to remote GPUs

11 GPU SpMV: 𝒕 ← 𝑨̄(𝑝 ) ∗ 𝒔
12 P2P SYNC: Wait until 𝒔 is received

13 GPU SpMV: 𝒕 ← 𝒕 + 𝑨̂(𝑝 ) ∗ 𝒔
14 GPU DOT: 𝛾 (𝑝 ) ← 𝒔 · 𝒕
15 (+) CPU SYNC: Wait until 𝛾 (𝑝 ) is ready on GPU

16 ALLREDUCE: 𝛾 ← ∑
𝑝 𝛾
(𝑝 )

17 GPU AXPY: 𝛼 ← 𝜌𝑘−1/𝛾; 𝒓𝑘 ← −𝛼𝒕 + 𝒓𝑘−1

18 GPU DOT: 𝜌
(𝑝 )
𝑘
← 𝒓𝑘 · 𝒓𝑘

19 (+) CPU SYNC: Wait until 𝜌
(𝑝 )
𝑘

is ready on GPU

20 ALLREDUCE: 𝜌𝑘 ←
∑

𝑝 𝜌
(𝑝 )
𝑘

; start copying 𝜌𝑘 to CPU

21 GPU AXPY: 𝛼 ← 𝜌𝑘−1/𝛾; 𝒙
(𝑝 )
𝑘
← 𝛼𝒔 + 𝒙 (𝑝 )

𝑘−1
22 CPU SYNC: Wait until 𝜌𝑘 is copied from GPU
23 CPU: If

√
𝜌𝑘 ≤ 𝜖

√
𝜌0 Then Exit (Converged)

24 GPU AXPY: 𝛽 ← 𝜌𝑘/𝜌𝑘−1; 𝒔 ← 𝛽𝒔 + 𝒓𝑘
25 End For

Listing 2: Our multi-GPU implementation of CG with host-
initiated communication. Some synchronisation points are
mandatory for GPU-aware MPI, but they are not needed for
stream-awareGPU communication (e.g., NCCL/RCCL). These
are indicated by lines marked with (+).

kernels asynchronously, initiate asynchronous transfers of 𝜌𝑘 from
GPUs (line 20), and synchronise with their GPU on line 22, before
carrying out the convergence test.

Finally, host CPUs initiate all communication between GPUs.
Each DOT kernel is immediately followed by a collective allreduce
operation (lines 5, 16 and 20). Point-to-point communication asso-
ciated with SpMV (lines 8–12) starts with i) packing messages on
the GPU, followed by ii) posting (non-blocking) message sends and
receives from the CPU, and iii) waiting for messages to be received.
The local part of the SpMV is carried out in the meantime to overlap
with the communication.

In any case, the data itself travels directly between peer GPU
memories, if they are connected directly (e.g., NVLink or Infinity
Fabric), or between GPU and NIC, provided that the underlying
communication library supports it.

3.3.1 GPU-aware MPI. In the case of MPI, the necessary collec-
tive operations are performed with MPI_Allreduce. Point-to-point
communication uses persistent, non-blocking send/receive, later
followed by MPI_Waitall to ensure completion. Persistent APIs
reduce overhead [34] compared to standard MPI_Isend/MPI_Irecv
by instead calling MPI_Isend_init and MPI_Irecv_init only once
during setup, and then invoking MPI_Startall for each point-to-
point exchange. We assume that the MPI library is GPU-aware,
so that pointers to GPU memory are passed directly to MPI calls,

4



CPU- and GPU-initiated Communication Strategies for Conjugate Gradient Methods on Large GPU Clusters

and that it supports asynchronous progress, so that point-to-point
communication overlaps with SpMV computation.

Nevertheless, MPI communication imposes a need for additional
synchronisation points, because the host CPU must wait for data
produced by the GPU before it can be used in the appropriate
MPI calls. This limitation arises from the discrepancy between the
MPI programming model and the asynchronous execution model
that pervades GPU programming. Specifically, in Listing 2, three
additional synchronisation points are needed in each CG iteration.
In practice, the host CPU calls, e.g., cudaDeviceSynchronize, on
lines 9, 15 and 19, to ensure prior GPU kernels complete before
calling MPI_Isend (or MPI_Startall) (line 10) and MPI_Allreduce
(lines 16 and 20).

3.3.2 NCCL/RCCL. GPU collective communication libraries of-
fer direct equivalents for most MPI calls. In particular, we use
ncclAllReduce to perform allreduce operations for both NCCL and
RCCL. (Note that the libraries share identical APIs.) Non-blocking
point-to-point communication is achieved by enclosing a group
of calls to ncclSend and ncclRecv with calls to ncclGroupStart
and ncclGroupEnd.

Furthermore, NCCL and RCCL avoid the problem of excessive
CPU-GPU synchronisation, because communication can be queued
asynchronously by the host CPU onto GPU streams. Communica-
tion is thus carried out by the GPU as soon as previously queued
kernels are completed. There is no need for the CPU to wait un-
til the GPU is finished, and then have the GPU wait idly for the
CPU again until the communication is initiated. In Listing 2, the
SpMV, AXPY and DOT kernels are executed in the default stream,
whereas message packing (line 8), ncclSend and ncclRecv (line
10) are executed in a secondary, non-blocking stream, allowing it to
overlap with local SpMV (line 11). The synchronisation on line 12 is
achieved by asynchronously recording an event (cudaEventRecord
or hipEventRecord) in the secondary stream and making the de-
fault stream wait until the event has been reached.

3.4 CG with GPU-initiated communication
In this subsection, we present a novel implementation of CG that
departs from the traditional model of offloading a sequence of
individual kernels to the GPU. This work improves the CPU-free,
autonomous execution model proposed by Ismayilov et al. [32].
Our motivation stems from the fact that coordination between CPU
and GPU inevitably incurs overheads related to kernel launches,
CPU-GPU synchronisation and data transfers. Here we pose the
question: Can these overheads be avoided by offloading the entire
CG algorithm to the GPU in a single, monolithic kernel?

Our implementation relies on two recent developments in GPU
programming. The first is cooperative groups (since CUDA 9/ROCm
5), a feature that allows grid-wide synchronisation within CUD-
A/HIP kernels. The term grid refers to all of the GPU threads execut-
ing a kernel together on the GPU. Previously, the primary method
of achieving synchronisation among all threads in a grid was to
end the kernel and then have the CPU launch a new one. With
cooperative groups, one can instead insert synchronisation points
directly into the GPU kernel code to ensure that all threads (or a
subset of threads) reach the same point before proceeding. This is

1 Input: 𝑨(𝑝 ) = 𝑨̄(𝑝 ) + 𝑨̂(𝑝 ) , 𝑨̂
(𝑝 )

, 𝒃 (𝑝 ) , 𝒙
(𝑝 )
0 , 𝜖

2 GRID SpMV: 𝒓0 ← 𝒃 (𝑝 ) − 𝑨(𝑝 ) ∗ 𝒙 (𝑝 )0
3 GRID DOT: 𝜌

(𝑝 )
0 ← 𝒓0 · 𝒓0

4 GRID SYNC: Wait for all GPU threads

5 ALLREDUCE: 𝜌0 ←
∑
𝑝 𝜌
(𝑝 )
0

6 GRID SYNC: Wait for all GPU threads
7 GRID COPY: 𝒔 ← 𝒓0
8 For 𝑘 = 1, 2, . . . Do

9 THREAD 0: 𝛼 ← 𝜌
(𝑝 )
𝑘−1; 𝛽 ← 𝜌

(𝑝 )
𝑘−1

10 GRID SYNC: Wait for all GPU threads

11 THREAD 0: 𝛾 ← 0; 𝜌
(𝑝 )
𝑘
← 0

12 GRID COPY: 𝒕 ← 0
13 GRID SYNC: Wait for all GPU threads
14 GRID PACK: Pack 𝒔 for sending to remote GPU
15 P2P WAIT: Wait for ready signal from remote GPUs
16 GRID SYNC: Wait for all GPU threads
17 P2P SIGNAL: Put-with-signal 𝒔 to remote GPUs

18 GRID SpMV: 𝒕 ← 𝑨̄(𝑝 ) ∗ 𝒔
19 P2P WAIT: Wait for signal that 𝒔 is received
20 P2P SIGNAL: Unpack message to 𝒔; signal to remote GPUs
21 GRID SYNC: Wait for all GPU threads

22 GRID SpMV: 𝒕 ← 𝒕 + 𝑨̂(𝑝 ) ∗ 𝒔
23 GRID SYNC: Wait for all GPU threads

24 GRID DOT: 𝛾 (𝑝 ) ← 𝒔 · 𝒕
25 GRID SYNC: Wait for all GPU threads

26 ALLREDUCE: 𝛾 ← ∑
𝑝 𝛾 (𝑝 )

27 GRID SYNC: Wait for all GPU threads

28 GRID AXPY: 𝛼 ← 𝜌𝑘−1/𝛾; 𝒙
(𝑝 )
𝑘
← 𝛼𝒔 + 𝒙 (𝑝 )

𝑘−1
29 GRID AXPY: 𝛼 ← 𝜌𝑘−1/𝛾; 𝒓𝑘 ← −𝛼𝒕 + 𝒓𝑘−1
30 GRID DOT: 𝜌

(𝑝 )
𝑘
← 𝒓𝑘 · 𝒓𝑘

31 GRID SYNC: Wait for all GPU threads

32 ALLREDUCE: 𝜌𝑘 ←
∑
𝑝 𝜌
(𝑝 )
𝑘

33 GRID SYNC: Wait for all GPU threads
34 GRID: If

√
𝜌𝑘 ≤ 𝜖

√
𝜌0 Then Exit (Converged)

35 GRID AXPY: 𝛽 ← 𝜌𝑘 /𝜌𝑘−1; 𝒔 ← 𝛽𝒔 + 𝒓𝑘
36 End For

Listing 3: Our monolithic, multi-GPU implementation of CG
with GPU-initiated communication.

needed, for instance, to make the result of a dot product available
to all GPU threads in a grid for use in subsequent computations.

Second, with the support of GPU-initiated communication, the
point-to-point and collective communications needed in multi-GPU
CG can be invoked from within the GPU kernel code itself. For
this, we use NVIDIA’s NVSHMEM, which offers one-sided, GPU-
initiated communication primitives. AMD’s counterpart, rocSH-
MEM, can be substituted and used, but is unfortunately not sup-
ported on LUMI, the AMD-based system used in our experiments
(Section 4.1).

A pseudo-code for ourmonolithic CG kernel is shown in Listing 3.
Most operations are performed jointly by all threads in the grid
(indicated with GRID), while some are carried out by a single thread
(THREAD 0). Point-to-point communication (described in detail
below) also involves operations at the granularity of a thread block.

3.4.1 BLAS operations. Vendor-optimised BLAS kernels (e.g., cuS-
PARSE/hipSPARSE) are generally not available to be used from
within a GPU kernel, and we therefore provide our own versions.
AXPY is implemented as a grid-stride loop, whereas DOT is a grid-
stride loop over the vector entries, followed by a tree-based, warp-
level reduction and atomic operations to sum contributions from all
warps. A subsequent grid-wide synchronisation is needed to ensure
that all warps have finished. Finally, we implement SpMV using
the merge-based algorithm [38], which is also used by cuSPARSE.

5



James D. Trotter, Sinan Ekmekçibaşı, Doğan Sağbili, Johannes Langguth, Xing Cai, and Didem Unat

3.4.2 Communication. For allreduce, we use NVSHMEM’s built-
in collectives (nvshmem_double_sum_reduce), called from a single
GPU thread. Although NVSHMEM allows a full warp or thread
block to join the communication, we saw no performance benefit
in the case of communicating only a single scalar value.

We implement one-sided point-to-point communication by send-
ing each message in a non-blocking put-with-signal operation, i.e.,
nvshmemx_double_put_signal_nbi_block is called by an entire
thread block, which is recommended to achieve higher throughput,
especially for communication over NVLink [44]. Signals are used as
a mechanism by the sender to indicate when it has finished deposit-
ing its message in the recipient’s buffer. They are also used by the
recipient to notify the sender (nvshmem_signal_op) when the mes-
sage has been unpacked from the recipient’s buffer, which can then
be reused for the next message. GPUs typically receive messages
from multiple remote GPUs, and different messages are handled
by different thread blocks and its own pair of signals. In lines 15
and 19 in Listing 3, a single thread in the block waits for the signal
(nvshmem_signal_wait_until) and a block-wide synchronisation
is performed before all threads in the block proceed.

3.4.3 Synchronisation. While the monolithic approach completely
eliminates any form of CPU-GPU synchronisation, there are still a
number of GPU-wide synchronisation points present. It is prudent
to keep these to a minimum, as they are expensive, but cannot be
avoided when work is distributed across multiple thread blocks
and data dependencies between thread blocks arise. This is clearly
the case for dot products and allreduce communication, but it also
occurs due to scalars 𝛼 , 𝛽 , 𝛾 and 𝜌

(𝑝 )
𝑘

being shared by all threads.
Grid synchronisation is also needed specifically due to using the
merge-based SpMV algorithm, because it assigns threads to entries
of the input/output vectors in a different way than the surrounding
BLAS operations.

3.4.4 Programming challenges. While programming distributed-
memory GPU codes already presents many difficulties, using a
one-sided communication model, such as NVSHMEM, poses ad-
ditional challenges. The programmer must be even more aware
of synchronisation and manage it explicitly to ensure that remote
data is read or written at the right time. More specifically related to
GPU-initiated communication, NVSHMEM generally offers three
APIs for the same operation at different levels of granularity. The
programmer must decide if a communication primitive, e.g., a put
or allreduce operation, should be performed by a single GPU thread,
or a group of threads in the form of a warp or a thread block. Such
choices impact synchronisation that may need to be performed by
the GPU threads, and it is often unclear what implications such
choices have for intranode (e.g., NVLink) and internode (e.g., Infini-
band) communication performance.

3.5 Pipelined CG
Our implementations of multi-GPU pipelined CG with CPU- and
GPU-initiated communication both follow the same principles as
outlined in the previous two sections. The main difference is that
the two allreduce collective communications are instead combined
into a single allreduce operation in pipelined CG. In turn, pipelined
CG performs six AXPY operations per iteration instead of three,

thus requiring more FLOPs. It also requires three additional vectors
in the working memory, which can negatively impact data locality.
Nonetheless, an overall benefit is expected when the number of
GPUs is very large and allreduce becomes a dominating factor. This
version of pipelined CG is known as Pipelined Chronopoulos/Gear
CG, shown as Algorithm 3 in Ghysels and Vanroose [21].

4 Experiments
We evaluate the performance of our proposed CG and pipelined
CG implementations on three supercomputers with NVIDIA and
AMD GPUs. In these experiments, we refer to our CG implemen-
tations as aCG. The versions with CPU-initiated communication
(Section 3.3) based on GPU-aware MPI, NCCL and RCCL are termed
aCG (MPI), aCG (NCCL) and aCG (RCCL), respectively, whereas the
GPU-initiated communication version (Section 3.4) is referred to as
aCG (NVSHMEM). PETSc’s CG and pipelined CG implementations,
which are based on GPU-aware MPI, are used for comparison.

4.1 Experimental setup
4.1.1 Supercomputers. We use three different supercomputers for
our experiments, whose technical specifications are described be-
low. Note that we report all network bandwidths as unidirectional
values.

LUMI is an AMD-basedmachine with 2 978 nodes in the LUMI-G
partition. Each node features one 64-core AMD Trento EPYC 7A53
CPU and four AMD Instinct MI250X Accelerators, consisting of two
Graphics Compute Dies (GCDs) each. The GCDs are accessed as
individual GPUs, for a total of 8 GPUs per node. Each pair of GPUs
is connected by one to four Infinity Fabric links with a bandwidth
of 400 Gb/s each. The network is a Cray Slingshot 11 interconnect
with Dragonfly topology, and each node has four HPE Cray Cassini-
1 NICs with a bandwidth of 200 Gb/s each. The NICs are directly
connected to the GPUs. On LUMI, we use ROCm 6.0.3 with RCCL
2.18.3 and Cray MPICH 8.1.29.

MareNostrum 5 has 1 120 nodes in the Accelerated (ACC) par-
tition, each of which has four NVIDIA H100 GPUs with 64 GB of
HBM2e and two Intel Xeon Platinum 8460Y+ 40-core CPUs. All GPU
pairs are connected via NVLINK 4.0 with a bandwidth of 1.2 Tb/s.
Each GPU is also connected to an NVIDIA ConnectX-7 NIC with
200 Gb/s. The network is NDR Infiniband with a three-layer fat-tree
topology [8]. The system’s policies limit jobs to 100 nodes (400
GPUs), of which we use up to 64 nodes (256 GPUs).

Wisteria is a smaller system whose Wisteria-A (Aquarius) parti-
tion consists of 32 nodes with tightly coupled NVIDIA GPUs. Each
node has 8 NVIDIA A100-SXM4-40GB GPUs, two Intel Xeon Plat-
inum 8360Y CPUs, and 4 Mellanox ConnectX-6 NICs with 100 Gb/s.
The GPUs are arranged in an HGX configuration, which allows all
pairs to communicate at 2.4 Tb/s simultaneously. The network is
HDR Infiniband with a full bisection bandwidth fat-tree topology.
The maximum number of nodes per job is 8 (64 GPUs).

4.1.2 Software. On MareNostrum, we use NVIDIA HPC SDK 25.1,
CUDA 12.6 and HPC-X MPI 2.21, whereas on Wisteria we have
NVIDIA HPC SDK 24.1, CUDA 12.3 and HPC-X MPI 2.17.1. On
both machines, we use NCCL 2.18.5 and NVSHMEM 3.1.7 with
the IBRC transport (see Section 2.1.4). The IBGDA transport is not
supported on MareNostrum and we disabled it onWisteria due to

6



CPU- and GPU-initiated Communication Strategies for Conjugate Gradient Methods on Large GPU Clusters

Table 1: Sparse matrices used in experiments

Nonzeros/Row

Matrix Rows Nonzeros Min/Max/Mean

Queen_4147 4,147,110 316,548,962 24 / 81 / 76.3
Bump_2911 2,911,419 127,729,899 1 / 195 / 43.9
Cube_Coup_dt6 2,164,760 124,406,070 24 / 68 / 57.5
Flan_1565 1,564,794 114,165,372 24 / 81 / 73.0
audikw_1 943,695 77,651,847 21 / 345 / 82.3
Serena 1,391,349 64,131,971 15 / 249 / 46.1

poisson1d 1,073,741,824 3,221,225,470 2 / 3 / 3.0
heart15 874,424,445 7,185,411,541 5 / 77 / 8.2

lower allreduce performance compared to IBRC. PETSc 3.21.5 and
METIS 5.1.0 are used on all systems.

The solver codes, including PETSc, are highly tuned through the
same compiler flags for the host CPU (e.g., -O3 -march=native)
and optimised for the GPU architecture (e.g., using NVCC com-
piler flags -gencode=arch=compute_80,code=sm_80 for NVIDIA
A100, and HIP compiler flags –offload-arch=gfx90a for MI250X).
Regarding communication, we have ensured that collectives are
optimised by using NVIDIA’s HPC-X and HCOLL for optimised col-
lectives on MareNostrum and Wisteria, and vendor-optimised Cray
MPICH on LUMI. Furthermore, we have used the recommended
tuning from [18].

4.1.3 Test matrices. The matrices used in this study are listed in
Table 1. We selected the largest relevant ones, i.e., real-valued and
symmetric, from SuiteSparse [17]. In addition, we created two larger
matrices for the scaling experiments. The first is a tridiagonal matrix
from discretising a 1D Poisson equation on a uniform grid, designed
to stress the DOT and AXPY kernels and global reductions. The
second is an irregular matrix from a 3D cardiac monodomain sim-
ulation on an unstructured, tetrahedral mesh based on a realistic
geometry of the human heart [37]. The last matrix is representative
of applying a linear finite element method on a real geometry.

4.1.4 Reported measurements. For each matrix, we create a manu-
factured solution vector 𝑥∗ by generating uniformly random values
in the range [−1, 1] and then normalising, so that the 2-norm of
𝑥∗ is equal to one. The corresponding right-hand side is computed
by multiplying 𝑏 = 𝐴𝑥∗, and the linear system is solved with a
zero initial guess and a tolerance of 10−6 for the relative residual
∥𝑏 −𝐴𝑥 ∥/∥𝑏∥.

Solver time is measured by the host CPU on each MPI pro-
cess using clock_gettime. All solvers perform 10 warmup iter-
ations followed by MPI barrier and CPU-GPU synchronisation (e.g.,
cudaDeviceSynchronize) prior to starting the timer. CPU-GPU
synchronisation is also performed before stopping the timer to en-
sure GPUwork completion. We then report the maximum time over
all MPI processes involved. For a given matrix and GPU count, we
use identical matrix partitioning and measure all solvers including
PETSc within the same job submission, ensuring consistent parti-
tioning, nodes, and GPUs for fair comparison. Each measurement
is repeated three times, and the best result is reported to minimize
the impact of outliers or transient network issues.

For our CG solvers with CPU-initiated communication, we also
perform some additional measurements for detailed analysis, where
individual GPU kernel times are measured through manual, fine-
grained instrumentation and accurate CUDA/HIP event-based tim-
ing. The overhead of this instrumentation is generally below 5%.

In addition to solver times, we calculate FLOP rates and memory
throughput by counting SpMV, DOT, and AXPY operations along
with their corresponding FLOPs and memory traffic. We distinguish
DOT from NRM2, the latter being a dot product of a vector with
itself. For a matrix with𝑚 rows and 𝑛 nonzeros, the FLOP count is
2𝑛 for SpMV and 2𝑚 for DOT, NRM2 and AXPY, whereas memory
traffic in bytes is 20(𝑛 +𝑚) for SpMV, 24𝑚 for AXPY, 16𝑚 for DOT
and 8𝑚 for NRM2. Values are assumed to be in double precision
floating point, whereas indices are 4-byte integers. Moreover, 𝑘
iterations of CG result in 𝑘 + 1 SpMV, 𝑘 DOT, 𝑘 + 1 NRM2, and
3𝑘 AXPY operations. In comparison, 𝑘 iterations of pipelined CG
performs 𝑘 + 2 SpMV, 𝑘 DOT, 𝑘 NRM2 and 6𝑘 AXPY operations.

4.2 SuiteSparse experiments
4.2.1 Single GPU performance. We first test the solvers on the
matrices from SuiteSparse using a single GPU. Since there is no
communication in this scenario, we refer to our single-GPU CG
implementation from Section 3.3 as aCG (standard) and the single-
GPU monolithic version from Section 3.4 as aCG (monolithic).

Large variations in running time is expected between different
matrices due to matrix size and the different number of iterations
the solver takes to converge. However, for a given matrix, the
iteration counts are roughly the same across solvers and machines,
but may vary slightly due to round-off errors. As a result, we only
show iteration counts from measurements on one of the machines
(in this case MareNostrum 5).

Results are shown in Table 2. aCG (standard) consistently outper-
forms PETSc by approximately 5–10%, primarily due to the synchro-
nization improvements discussed in Section 3.1.2. It is also about
5–10% faster than aCG (monolithic), mainly because the latter uses
our own merge-based SpMV implementation. Recall that aCG (stan-
dard) and PETSc both benefit from cuSPARSE/hipSPARSE’s opti-
mized SpMV. An exception to this trend is Queen_4147 on AMD
MI250X, where our merge-based SpMV outperforms the one from
hipSPARSE on this particular matrix. Since aCG (monolithic) and
PETSc provide roughly the same performance, we conclude that
the monolithic approach indeed has less overhead, and the impact
is comparable to the difference between our own and the vendor-
optimised SpMV kernels.

We also list the FLOP rate in GFLOP/s, which is based on the
total calculated number of FLOPs for all iterations, as described in
Section 4.1.4 above. These values are fairly constant for each solver
and GPU, except for Queen_4147 on MI250X.

More importantly, the attained memory bandwidth is close to
the maximum of 1.6 TB/s (MI250X GCD), 1.56 TB/s (A100), and
2.02 TB/s (H100). Note that MareNostrum 5 uses the 64GB version
of the H100, which has lowermemory bandwidth than the full 80 GB
SXM version. Due to the large caches of both NVIDIA GPUs of
40MB (A100) and 30MB (H100), calculated bandwidth exceeds the
available memory bandwidth as some vectors are partially cached.

7



James D. Trotter, Sinan Ekmekçibaşı, Doğan Sağbili, Johannes Langguth, Xing Cai, and Didem Unat

Table 2: Single GPU performance of aCG and PETSc on all three machines. TB/s refers to the calculated memory throughput.
The single-GPU versions of our CG algorithms from Sections 3.3 and 3.4 are referred to as aCG (standard) and aCG (monolithic).

Single GPU Performance MI250X GCD (LUMI) A100 (Wisteria) H100 (MareNostrum 5)

Matrix Solver Iterations Time [s] GFLOP/s TB/s Time [s] GFLOP/s TB/s Time [s] GFLOP/s TB/s

Queen_4147 PETSc 26 418 251.86 73.28 0.74 99.54 186.52 1.88 85.80 215.69 2.18
aCG (standard) 26 165 247.54 74.97 0.76 94.10 198.43 2.00 79.91 229.36 2.32
aCG (monolithic) 26 642 153.95 117.26 1.18 102.47 180.41 1.82 87.32 213.72 2.16

Bump_2911 PETSc 25 035 53.26 133.17 1.35 43.67 167.73 1.70 36.40 195.72 1.99
aCG (standard) 25 290 50.10 143.84 1.46 39.84 185.94 1.89 33.62 214.09 2.18
aCG (monolithic) 26 342 63.04 115.79 1.18 42.88 174.45 1.77 37.44 200.20 2.03

Cube_Coup_dt6 PETSc 408 0.80 140.96 1.43 0.64 175.93 1.78 0.54 207.81 2.10
aCG (standard) 408 0.75 150.50 1.52 0.60 188.75 1.91 0.51 221.56 2.24
aCG (monolithic) 408 0.98 115.39 1.17 0.64 177.88 1.80 0.56 203.25 2.06

Flan_1565 PETSc 1 158 2.39 121.59 1.23 1.60 181.38 1.83 1.35 215.70 2.18
aCG (standard) 1 155 2.27 127.91 1.29 1.46 198.04 2.00 1.26 229.33 2.32
aCG (monolithic) 1 154 2.39 121.24 1.22 1.58 183.82 1.86 1.35 214.35 2.16

audikw_1 PETSc 4 753 7.11 110.99 1.12 4.32 183.89 1.86 3.67 213.21 2.15
aCG (standard) 4 772 6.81 117.34 1.18 3.83 204.65 2.07 3.36 233.98 2.36
aCG (monolithic) 4 941 6.78 117.44 1.19 4.41 183.18 1.85 3.82 213.05 2.15

Serena PETSc 3 700 4.37 121.48 1.23 3.17 168.13 1.71 2.66 199.05 2.02
aCG (standard) 3 703 4.03 132.20 1.34 2.77 191.95 1.95 2.39 221.69 2.25
aCG (monolithic) 3 745 4.68 114.15 1.16 3.07 174.62 1.77 2.81 190.47 1.93

1 2 4 8 16 32
0

2

4

6

8

10

12

14

Sp
ee

du
p 

Queen_4147

1 2 4 8 16 32
0

1

2

3

4

5

6

7

8
Bump_2911

1 2 4 8 16 32
0

1

2

3

4

5

6

7 Cube_Coup_dt6

1 2 4 8 16 32
Number of GPUs

0

1

2

3

4

5

6

7

Sp
ee

du
p 

Flan_1565

1 2 4 8 16 32
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 audikw_1

1 2 4 8 16 32
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Serena

Wisteria aCG (MPI)
Wisteria aCG (NCCL)

Wisteria aCG (NVSHMEM)
Wisteria PETSc

LUMI aCG (MPI)
LUMI aCG (RCCL)

LUMI PETSc

Figure 1: Speedups on SuiteSparse instances on LUMI and Wisteria. Value are relative to the running time of aCG (MPI) on one
A100 GPU. A log scale is used on the horisontal axis.

8



CPU- and GPU-initiated Communication Strategies for Conjugate Gradient Methods on Large GPU Clusters

Table 3: Performance per GPU for the large matrix instances of the base configuration of 64 GPUs on LUMI and 16 GPUs on
MareNostrum 5. Time is given in seconds. For aCG with GPU-initiated communication, results are only shown onMareNostrum
5, since LUMI does not support rocSHMEM.

Performance per GPU LUMI (64 GPUs; AMD MI250X GCD) MareNostrum 5 (16 GPUs; NVIDIA H100)

CG Pipelined CG CG Pipelined CG

Solver Time [s] GFLOP/s TB/s Time [s] GFLOP/s TB/s Time [s] GFLOP/s TB/s Time [s] GFLOP/s TB/s

po
is
so
n1

d PETSc 2.86 87.43 0.96 4.78 71.88 0.81 8.81 113.34 1.25 15.76 87.16 0.98
aCG (MPI) 2.20 113.64 1.25 2.77 123.96 1.40 6.83 146.29 1.61 8.35 164.54 1.86
aCG (RCCL/NCCL) 2.49 100.23 1.10 2.90 118.41 1.33 6.82 146.59 1.61 8.33 164.98 1.86
aCG (NVSHMEM) 8.00 124.91 1.37 9.53 144.38 1.63

he
ar
t1
5 PETSc 0.57 93.13 0.97 0.73 84.09 0.89 1.27 162.71 1.69 1.88 129.55 1.37

aCG (MPI) 0.49 105.12 1.09 0.57 107.99 1.14 1.09 189.72 1.97 1.25 194.67 2.06
aCG (RCCL/NCCL) 0.53 98.26 1.02 0.61 100.71 1.07 1.11 185.97 1.93 1.24 194.86 2.07
aCG (NVSHMEM) 1.46 143.95 1.50 1.63 151.21 1.60

4.2.2 Scalability. Next, we study the scaling on the SuiteSparse
matrices, using up to 32 GCDs/GPUs on LUMI and Wisteria, as
most matrices are too small to benefit from larger GPU counts.
Our versions of multi-GPU CG with CPU-initiated communication
are derived from aCG (standard) and are referred to as aCG (MPI)
or aCG (RCCL/NCCL), depending on the underlying communica-
tion library that is used. The monolithic CG implementation is
aCG (NVSHMEM), and there is no counterpart for AMD GPUs due
to lack of rocSHMEM support on LUMI.

Results are shown in Figure 1. On both machines, aCG (MPI) is
consistently ahead of PETSc, though the difference for 32 GPUs is
10–22 % on Wisteria, but only 2–6 % on LUMI. Furthermore, NCCL
performs on average 7 % better than aCG (MPI) for intranode com-
munication on Wisteria (i.e., up to 8 GPUs), while the internode
case of 16 and 32 GPUs is less clear and depends on the matrix.
RCCL performs similar to aCG (MPI), but very poorly on 32 GPUs.
More detailed profiling shows that the difference is due to allreduce,
which is 2.3 to 3.0× faster when using MPI. aCG (NVSHMEM) lags
behind the other solvers on the A100 but catches up for 32 GPUs on
the small instances. This suggests that its main advantage, reduced
synchronization latency, is present but not large enough to compete
with the other solvers at the scale of 32 GPUs.

If we consider one of LUMI’s full MI250X accelerators, which
consists of 2 GCDs/GPUs, then we find that its performance is
between 10 and 40% higher than the performance of an NVIDIA
A100 GPU (see Table 2). Thus, while detailed energy measurements
are beyond the scope of this paper, the results indicate that the
GPUs have a similar performance per watt since the MI250X has a
20% higher TDP.

4.2.3 Comparison to other works. Finally, we compare results from
Table 2 and Figure 1 for our monolithic, NVHSMEM-based solver
on NVIDIA A100 to results reported by Ismayilov et al. [32] and
Ma et al. [35] concerning similar CG solvers, also based on NVSH-
MEM. We focus on the matrix Flan_1565, since it is used in all three
studies. On a single A100 GPU, the performance is 397.5, 880 and
732.9 iterations per second for [32], [35] and our implementation,
respectively. The differences are attributed to different SpMV ker-
nels used in each case. The use of tensor cores in [35] provides

about 20% speedup over the vendor’s cuSPARSE kernels used in
our implementation.

On 8 A100s in a single node, connected with NVLink, the perfor-
mance is 2458.5 and 3121.9 iterations per second for [32] and our
implementation, respectively. The results are thus roughly com-
parable in the single-node scenario. We also performed additional
experiments using the code provided by Ismayilov et al. [32], and
found that performance drops dramatically to 2.0 iterations per
second in a 2-node setup (16 GPUs) due to inefficient P2P com-
munication. We expect the implementation by Ma et al. [35] to
perform similarly, because it is based on the same P2P communica-
tion scheme. Ultimately, the communication-related improvements
presented in this paper allow our monolithic, NVSHMEM-based
solver to scale to multiple nodes and large GPU counts.

4.3 Large-scale experiments
We test the solvers as well as their pipelined versions on the large
matrix instances, using up to 256 GPUs on MareNostrum 5 and up
to 1024 GPUs on LUMI. The job size limit of 64 GPUs onWisteria
prevents us from running large scale experiments on that machine.
As before, aCG with GPU-initiated communication is only shown
for NVSHMEM, as there is no support for rocSHMEM on LUMI.

4.3.1 Baseline performance. Table 3 shows the runtime and perfor-
mance per GPU of the CG and pipelined CG solvers for 64 GPUs on
LUMI and 16 GPUs on MareNostrum 5. For the matrix poisson1d,
all solvers perform 930 iterations, whereas for heart15, the iteration
counts range from 92 to 95. In any case, the FLOP rates and mem-
ory throughput reported for each solver factors out differences in
iteration counts.

The fact that aCG (MPI) and aCG (RCCL/NCCL) outperform
PETSc by 15–30 % highlights that the benefit of reducing synchroni-
sation carries over from the single GPU case. Interestingly, the gap
betweenMPI and RCCL is far smaller than it was for the SuiteSparse
matrices in Figure 1, as allreduce is not yet dominating performance
at this scale. PETSc and NVSHMEM are considerably slower, with
the pipelined version from PETSc performing especially weak.

Note that the pipelined versions perform a larger number of
operations to obtain the same result. Thus, their FLOP rates and

9



James D. Trotter, Sinan Ekmekçibaşı, Doğan Sağbili, Johannes Langguth, Xing Cai, and Didem Unat

0

2

4

6

To
ta

l T
im

e 
(s

)

2.
20 2.

77
2.

49 2.
90

2.
86

4.
78

Time: poisson1d

64 128 256 512 102401
2
4

8

16

Sp
ee

du
p

Speedup vs 64 GPUs: poisson1d

64 GPUs0.00

0.25

0.50

0.75

1.00

To
ta

l T
im

e 
(s

)

0.
49 0.

57
0.

53 0.
61

0.
57 0.

73

Time: heart15

64 128 256 512 1024
Number of GPUs

01
2
4

8

16

Sp
ee

du
p

Speedup vs 64 GPUs: heart15

LUMI

aCG (MPI)

aCG (MPI) Pipelined

aCG (RCCL)

aCG (RCCL) Pipelined

PETSc

PETSc Pipelined

Figure 2: Running time and scaling of the large matrix instances on LUMI. Speedups are relative to the running time of
aCG (MPI) on 64 GPUs. Log scales are used on the horisontal axis of the rightmost plots.

0

5

10

15

20

To
ta

l T
im

e 
(s

)

6.
83 8.

35
6.

82 8.
33

8.
00 9.

53
8.

81
15

.7
6

Time: poisson1d

16 32 64 128 25601
2
4

8

16

Sp
ee

du
p

Speedup vs 16 GPUs: poisson1d

16 GPUs0

1

2

To
ta

l T
im

e 
(s

)

1.
09 1.

25
1.

11 1.
24 1.

46 1.
63

1.
27

1.
88

Time: heart15

16 32 64 128 256
Number of GPUs

01
2
4

8

16

Sp
ee

du
p

Speedup vs 16 GPUs: heart15

MareNostrum 5

aCG (MPI)

aCG (MPI) Pipelined

aCG (NCCL)

aCG (NCCL) Pipelined

aCG (NVSHMEM)

aCG (NVSHMEM) Pipelined

PETSc

PETSc Pipelined

Figure 3: Runtime and scaling for the large matrices onMareNostrum 5. Speedups are relative to the running time of aCG (MPI)
in heart15 and acg (NCCL) in poisson1d on 16 GPUs. Log scales are used on the horisontal axis of the rightmost plots.

attained bandwidths are higher, even though they take a longer
time to solution. MPI and NCCL perform very similarly.

4.3.2 Scalability. Scaling to larger runs is shown in Figures 2 and
3 for LUMI and MareNostrum 5, respectively. As discussed above,
we compare time to solution rather than FLOPs, using the time of
aCG (MPI) in Table 3 as the basis for speedup.

For poisson1D on LUMI, we observe that the pipelined version of
aCG (MPI) scales better. This is expected since the runtime of this
instance is dominated by allreduce, and the pipelined versions only
perform one such operation per time step. More detailed analysis
shows that aCG (MPI) spends 53% of the time in allreduce for
1024 GPUs. Furthermore, our measurements show that PETSc’s
CG outperforms aCG for very large GPU counts (512 or more).
Further experiments confirm that it is in fact better to let the CPU

perform the reduction on data located in host memory, which PETSc
does, instead of passing a pointer to GPU memory when calling
MPI_Allreduce. In this case, the lower latency of performing the
reduction on data in host memory outweighs the additional CPU-
GPU data copies and synchronisation that is needed.

For heart15 on LUMI, where running time is far more dependent
on the point-to-point communication, the differences are much
smaller. Both CG and pipelined CG scale well and attain similar
performance for aCG (MPI) and PETSc. aCG (RCCL), on the other
hand, scales poorly, which is in stark contrast to NCCL.

On MareNostrum 5, the NCCL versions perform best when allre-
duce is emphasised (poisson1d), whereas MPI performs best when

10



CPU- and GPU-initiated Communication Strategies for Conjugate Gradient Methods on Large GPU Clusters

point-to-point communication is most important (heart15). Specifi-
cally, for 256 GPUs, NCCL is about 5–10 % faster than MPI on pois-
son1D, whereas MPI is about 10% faster than NCCL for heart15.
The NVSHMEM versions are in any case catching up, and it is
likely that for an even larger system, they would be able to out-
perform the alternatives. PETSc’s pipelined CG again performs
poorly, though further experiments beyond 256 GPUs are needed
to conclude about its scalability. Apart from that, the difference
between CG and pipelined CG is less pronounced on MareNostrum
5, indicating that allreduce is not a major bottleneck.

Overall, the codes show excellent strong scaling behavior with
the best solvers maintaining a parallel efficiency of 76 % for 256
GPUs and 46 % for 1024 GPUs. This suggests that they are suitable
for solving extremely large systems.

5 Related work
Communication is a bottleneck in large-scale systems and adoption
of GPUs has focused the attention on GPU-to-GPU communica-
tion, as surveyed by Unat et al. [53] and De Sensi et al. [18]. The
latter compares GPU-aware MPI to NCCL/RCCL for intra- and
internode communication on large NVIDIA and AMD systems—
Alps, Leonardo and LUMI—using microbenchmarks for pairwise
point-to-point communication, all-to-all and allreduce collectives.
They found that NCCL consistently outperforms GPU-aware MPI
for allreduce on NVIDIA systems. Although RCCL does the same
for large message sizes on LUMI, it only attains 10–25% of the
performance compared with GPU-aware MPI for allreduce on small
messages (e.g., 8 to 64 B)—the most critical case for iterative solvers,
such as CG. Our results indeed confirm these observations.

Hsu et al. [29] conducted an early evaluation of NVSHMEM’s
usability and its performance on Summit with matrix multiplication
and a Jacobi solver as examples. For Jacobi, NVSHMEM shows com-
parable performance to MPI at least on up to 2 048 nodes (12 288
NVIDIA V100 GPUs). Groves et al. [22] compare NVSHMEM’s CPU-
and GPU-initiated internode communication on Summit, pointing
out inefficiencies in NVSHMEM’s GPU-initiated communication re-
lated to the use of a CPU progress thread. While InfiniBand GPUDi-
rect Async (IBGDA) [49] seeks to address this, we found that system
configurations on MareNostrum 5, Wisteria and other clusters we
encountered, either did not allow for IBGDA at all or still required
a CPU proxy thread anyway.

PETSc [7] is a well-known library for iterative solvers and serves
as a baseline for comparison in our experiments. The communica-
tion layer used by PETSc solvers is known as PETScSF [58], and it
relies on GPU-aware MPI. Mills et al. [39] identified and discussed
the challenges of GPU communication in PETSc’s iterative solvers,
and suggested replacing MPI with NCCL and/or NVSHMEM to
perform GPU stream-aware communication. Faibussowitsch et al.
[19] later studied how to incorporate GPU streams in PETSc, and
Mills et al. [40] recently adopted the host-side APIs of NVSHMEM
for stream-aware, CPU-initiated communication in PETScSF. Fur-
thermore, using stream-aware communication and skipping con-
vergence tests in some iterations proved to reduce synchronisation
overhead considerably.

Our monolithic kernel implementation of CGwith GPU-initiated
communication follows the persistent kernel paradigm [23] (also

similar to the concept of megakernel or ubershader in graphics [52]).
This is enforced when using CUDA/HIP cooperative groups for in-
kernel synchronisation, because all GPU threads in a thread block
must be scheduled concurrently on a Streaming Multiprocessor
(SM). Ismayilov et al. [32] and Ma et al. [35, 36] have previously cre-
ated CG solvers in the style of a persistent kernel with GPU-initiated
NVSHMEM communication. This is closely related to our work,
although there are differences in the underlying SpMV kernels
and point-to-point communication schemes. We use a merge-based
SpMV kernel to match vendor-optimised kernels from cuSPARSE,
whereas Ismayilov et al. [32] uses a naive CSR SpMV kernel and Ma
et al. [35, 36] optimises SpMV performance by leveraging tensor
cores. Another major difference is the SpMV-related point-to-point
communication, where earlier works [32, 35, 36] issue individual
get operations (nvshmem_double_g) for each nonzero in the sparse
matrix. In this work, we employ a scalable point-to-point communi-
cation scheme (see Sections 3.2 and 3.4), avoiding barrier operations
during CG iterations and overlapping P2P communication with
SpMV. We found these improvements necessary to scale beyond a
single node, as earlier works considered only single-node setups
with up to 8 GPUs.

6 Conclusion
We have presented several new implementations of CG solvers, in-
cluding the first multi-GPU implementation that is fully CPU-free
and scales beyond a single node. Our benchmarks show excellent
performance, both compared to PETSc and to the upper limits de-
rived from the memory bandwidth, although there is room for
improvement with regards to the monolithic CG implementation.
We anticipate that further optimisation targeting the SpMV com-
ponent could bring it to the level of the vendor-optimised SpMV
kernel provided by cuSPARSE, and thus allow the monolithic CG
solver to compete with, or even exceed, the standard offloading
approach. Moreover, our results highlight some of the respective
strengths and weaknesses of GPU-aware MPI and NCCL/RCCL.

Acknowledgments
This work has received funding through the Inno4scale project,
which is funded by the European High-Performance Computing
Joint Undertaking (JU) under Grant Agreement No 101118139. The
JU receives support from the European Union’s Horizon Europe
Programme. Authors from Koç University have received funding
partly from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme
(grant agreement No 949587).

This work is supported by "Joint Usage/Research Center for In-
terdisciplinary Large-scale Information Infrastructures (JHPCN)" in
Japan (Project ID: jh240030). The work has also benefited from the
Experimental Infrastructure for Exploration of Exascale Computing
(eX3), which is financially supported by the Research Council of
Norway under contract 270053. We acknowledge EuroHPC Joint
Undertaking for awarding access to the MareNostrum5 supercom-
puter in Spain and the LUMI supercomputer in Finland (Project IDs:
EHPC-DEV-2024D10-091, EHPC-BEN-2025B03-026).

11



James D. Trotter, Sinan Ekmekçibaşı, Doğan Sağbili, Johannes Langguth, Xing Cai, and Didem Unat

References
[1] E. Agostini, D. Rossetti, and S. Potluri. 2018. GPUDirect Async: Exploring GPU

synchronous communication techniques for InfiniBand clusters. J. Parallel and
Distrib. Comput. 114 (2018), 28–45. doi:10.1016/j.jpdc.2017.12.007

[2] AMD. 2023. ROCnRDMA. https://github.com/rocmarchive/ROCnRDMA.
[3] AMD. 2023. ROC_SHMEM. https://github.com/ROCm-Developer-Tools/ROC_

SHMEM.
[4] AMD. 2025. hipBLAS documentation. https://rocm.docs.amd.com/projects/

hipBLAS/en/latest/index.html
[5] AMD. 2025. hipSPARSE User Guide. https://rocm.docs.amd.com/projects/

hipSPARSE/en/latest/basics.html
[6] AMD. 2025. RCCL. https://rocm.docs.amd.com/projects/rccl/en/latest/.
[7] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. 1997.

Efficient Management of Parallelism in Object Oriented Numerical Software
Libraries. InModern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset,
and H. P. Langtangen (Eds.). Birkhäuser Press, 163–202.

[8] Fabio Banchelli, Marta Garcia-Gasulla, Filippo Mantovani, Joan Vinyals, Josep
Pocurull, David Vicente, Beatriz Eguzkitza, Flavio CC Galeazzo, Mario C Acosta,
and Sergi Girona. 2025. Introducing MareNostrum5: A European pre-exascale
energy-efficient system designed to serve a broad spectrum of scientific work-
loads. arXiv:2503.09917 [cs.DC] https://arxiv.org/abs/2503.09917

[9] Erin Carson and James Demmel. 2014. A residual replacement strategy for
improving the maximum attainable accuracy of 𝑠-step Krylov subspace methods.
SIAM J. Matrix Anal. Appl. 35, 1 (2014), 22–43.

[10] Erin Claire Carson. 2015. Communication-Avoiding Krylov Subspace Methods in
Theory and Practice. Ph. D. Dissertation. University of California, Berkeley.

[11] Erin C. Carson. 2018. The adaptive 𝑠-step conjugate gradient method. SIAM J.
Matrix Anal. Appl. 39, 3 (2018), 1318–1338.

[12] Erin C. Carson, Miroslav Rozložník, Zdeněk Strakoš, Petr Tichý, and Miroslav
Tůma. 2018. The numerical stability analysis of pipelined conjugate gradient
methods: Historical context and methodology. SIAM Journal on Scientific Com-
puting 40, 5 (2018), A3549–A3580.

[13] Anthony T. Chronopoulos and C. William Gear. 1989. On the efficient implemen-
tation of preconditioned s-step conjugate gradient methods on multiprocessors
with memory hierarchy. Parallel computing 11, 1 (1989), 37–53.

[14] Siegfried Cools, Emrullah Fatih Yetkin, Emmanuel Agullo, Luc Giraud, and Wim
Vanroose. 2018. Analyzing the effect of local rounding error propagation on the
maximal attainable accuracy of the pipelined conjugate gradient method. SIAM
J. Matrix Anal. Appl. 39, 1 (2018), 426–450.

[15] NVIDIA Corporation. 2022. cuSPARSE Library. NVIDIA Corporation.
[16] NVIDIA Corporation. 2025. cuBLAS, Release 12.8. NVIDIA Corporation.
[17] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. doi:10.
1145/2049662.2049663

[18] Daniele De Sensi, Lorenzo Pichetti, Flavio Vella, Tiziano De Matteis, Zebin Ren,
Luigi Fusco, Matteo Turisini, Daniele Cesarini, Kurt Lust, Animesh Trivedi,
Duncan Roweth, Filippo Spiga, Salvatore Di Girolamo, and Torsten Hoefler.
2024. Exploring GPU-to-GPU Communication: Insights into Supercomputer
Interconnects. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (Atlanta, GA, USA) (SC ’24). IEEE
Press, Article 33, 15 pages. doi:10.1109/SC41406.2024.00039

[19] Jacob Faibussowitsch, Mark F. Adams, Richard Tran Mills, Stefano Zampini, and
Junchao Zhang. 2023. Safe, Seamless, And Scalable Integration Of Asynchronous
GPU Streams In PETSc. arXiv:2306.17801 [cs.DC] https://arxiv.org/abs/2306.
17801

[20] Robert D. Falgout and Ulrike Meier Yang. 2002. hypre: A Library of High Perfor-
mance Preconditioners. In Computational Science — ICCS 2002, Peter M. A. Sloot,
Alfons G. Hoekstra, C. J. Kenneth Tan, and Jack J. Dongarra (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 632–641.

[21] P. Ghysels and W. Vanroose. 2014. Hiding global synchronization latency in the
preconditioned Conjugate Gradient algorithm. Parallel Comput. 40, 7 (2014), 224–
238. doi:10.1016/j.parco.2013.06.001 7thWorkshop on Parallel Matrix Algorithms
and Applications.

[22] Taylor Groves, Ben Brock, Yuxin Chen, Khaled Z. Ibrahim, Lenny Oliker,
Nicholas J. Wright, Samuel Williams, and Katherine Yelick. 2020. Performance
Trade-offs in GPU Communication: A Study of Host and Device-initiated Ap-
proaches. In 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS). 126–137. doi:10.1109/PMBS51919.
2020.00016

[23] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of Persistent
Threads style GPU programming for GPGPU workloads. In 2012 Innovative
Parallel Computing (InPar). 1–14. doi:10.1109/InPar.2012.6339596

[24] Tobias Gysi, Jeremia Bär, and Torsten Hoefler. 2016. dCUDA: Hardware Sup-
ported Overlap of Computation and Communication. In SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 609–620. doi:10.1109/SC.2016.51

[25] Khaled Hamidouche and Michael LeBeane. 2020. GPU-initiated OpenSHMEM:
correct and efficient intra-kernel networking for dGPUs. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(San Diego, California) (PPoPP ’20). Association for Computing Machinery, New
York, NY, USA, 336–347. doi:10.1145/3332466.3374544

[26] Michael Heroux, Hui Zhou, Ken Raffenetti, Yanfei Guo, Thomas Gillis, Robert
Latham, and Rajeev Thakur. 2024. Designing and prototyping extensions to the
Message Passing Interface in MPICH. Int. J. High Perform. Comput. Appl. 38, 5
(sep 2024), 527–545. doi:10.1177/10943420241263544

[27] M. R. Hestenes and E. Stiefel. 1952. Methods of conjugate gradients for solving
linear systems. J. Res. Nat. Bur. Standards 49, 6 (1952), 409–436.

[28] HPE. 2021. Cray MPICH Documentation. https://cpe.ext.hpe.com/docs/mpt/
mpich/intro_mpi.html.

[29] Chung-Hsing Hsu, Neena Imam, Akhil Langer, Sreeram Potluri, and Chris J.
Newburn. 2020. An Initial Assessment of NVSHMEM for High Performance
Computing. In 2020 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). 1–10. doi:10.1109/IPDPSW50202.2020.00104

[30] Intel. 2023. Intel® SHMEM. https://github.com/oneapi-src/ishmem.
[31] Intel. 2025. oneCCL. https://www.intel.com/content/www/us/en/developer/

tools/oneapi/oneccl.html.
[32] Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib, and Didem

Unat. 2023. Multi-GPU Communication Schemes for Iterative Solvers: When
CPUs are Not in Charge. In Proceedings of the 37th ACM International Conference
on Supercomputing (Orlando, FL, USA) (ICS ’23). Association for Computing
Machinery, New York, NY, USA, 192–202. doi:10.1145/3577193.3593713

[33] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20, 1 (1998), 359–392. doi:10.1137/S1064827595287997

[34] Kawthar Shafie Khorassani, Chen-Chun Chen, Hari Subramoni, and Dha-
baleswar K. Panda. 2023. Designing and Optimizing GPU-aware Nonblock-
ing MPI Neighborhood Collective Communication for PETSc*. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 646–656.
doi:10.1109/IPDPS54959.2023.00070

[35] Tailai Ma, Zhihong Gou, Ningyi Xu, and Shuli Sun. 2024. Efficient Multi-Gpu
Implementations of Preconditioned Conjugate Gradient Method Using Tensor
Cores. doi:10.2139/ssrn.4985526

[36] Tailai Ma, Zhihong Gou, Ningyi Xu, and Shuli Sun. 2025. Efficient multi-GPU
implementations of preconditioned conjugate gradient method. Advances in
Engineering Software 207 (2025), 103936. doi:10.1016/j.advengsoft.2025.103936

[37] HMartinez-Navarro, B Rodriguez, A Bueno-Orovio, and AMinchole. 2019. Repos-
itory for modelling acute myocardial ischemia: simulation scripts and torso-heart
mesh. https://ora.ox.ac.uk/objects/uuid:951b086c-c4ba-41ef-b967-c2106d87ee06

[38] Duane Merrill and Michael Garland. 2016. Merge-Based Parallel Sparse Matrix-
Vector Multiplication. In SC ’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 678–689. doi:10.
1109/SC.2016.57

[39] Richard Tran Mills, Mark F. Adams, Satish Balay, Jed Brown, Alp Dener, Matthew
Knepley, Scott E. Kruger, Hannah Morgan, Todd Munson, Karl Rupp, Barry F.
Smith, Stefano Zampini, Hong Zhang, and Junchao Zhang. 2021. Toward
performance-portable PETSc for GPU-based exascale systems. Parallel Comput.
108 (2021), 102831. doi:10.1016/j.parco.2021.102831

[40] Richard Tran Mills, Mark F. Adams, Satish Balay, Jed Brown, Jacob Faibussow-
itsch, Toby Isaac, Matthew G. Knepley, Todd Munson, Hansol Suh, Stefano
Zampini, Hong Zhang, and Junchao Zhang. 2025. PETSc/TAO developments for
GPU-based early exascale systems. The International Journal of High Performance
Computing Applications (2025). doi:10.1177/10943420241303710

[41] Takefumi Miyoshi, Hidetsugu Irie, Keigo Shima, Hiroki Honda, Masaaki Kondo,
and Tsutomu Yoshinaga. 2012. FLAT: A GPU Programming Framework to
Provide Embedded MPI. In Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units (London, United Kingdom)
(GPGPU-5). Association for Computing Machinery, New York, NY, USA, 20–29.
doi:10.1145/2159430.2159433

[42] Naveen Namashivayam, Krishna Kandalla, Trey White, Nick Radcliffe, Larry
Kaplan, and Mark Pagel. 2022. Exploring GPU Stream-Aware Message Passing
using Triggered Operations. arXiv:2208.04817 [cs.DC]

[43] NVIDIA. 2023. GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-
rdma/.

[44] NVIDIA. 2023. NVSHMEM. https://developer.nvidia.com/nvshmem.
[45] NVIDIA. 2025. NCCL. https://developer.nvidia.com/nccl.
[46] Lena Oden, Holger Fröning, and Franz-Joseph Pfreundt. 2014. Infiniband-Verbs

on GPU: A Case Study of Controlling an Infiniband Network Device from the
GPU. In 2014 IEEE International Parallel & Distributed Processing Symposium
Workshops. 976–983. doi:10.1109/IPDPSW.2014.111

[47] OpenMPI. 2023. Open MPI v5.0.x Documentation: CUDA. https://docs.open-
mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html.

[48] OpenMPI. 2023. Open MPI v5.0.x Documentation: ROCm. https://docs.open-
mpi.org/en/v5.0.x/tuning-apps/networking/rocm.html.

12

https://doi.org/10.1016/j.jpdc.2017.12.007
https://github.com/rocmarchive/ROCnRDMA
https://github.com/ROCm-Developer-Tools/ROC_SHMEM
https://github.com/ROCm-Developer-Tools/ROC_SHMEM
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/index.html
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSPARSE/en/latest/basics.html
https://rocm.docs.amd.com/projects/hipSPARSE/en/latest/basics.html
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://arxiv.org/abs/2503.09917
https://arxiv.org/abs/2503.09917
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/SC41406.2024.00039
https://arxiv.org/abs/2306.17801
https://arxiv.org/abs/2306.17801
https://arxiv.org/abs/2306.17801
https://doi.org/10.1016/j.parco.2013.06.001
https://doi.org/10.1109/PMBS51919.2020.00016
https://doi.org/10.1109/PMBS51919.2020.00016
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/SC.2016.51
https://doi.org/10.1145/3332466.3374544
https://doi.org/10.1177/10943420241263544
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html
https://doi.org/10.1109/IPDPSW50202.2020.00104
https://github.com/oneapi-src/ishmem
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html 
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html 
https://doi.org/10.1145/3577193.3593713
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/IPDPS54959.2023.00070
https://doi.org/10.2139/ssrn.4985526
https://doi.org/10.1016/j.advengsoft.2025.103936
https://ora.ox.ac.uk/objects/uuid:951b086c-c4ba-41ef-b967-c2106d87ee06
https://doi.org/10.1109/SC.2016.57
https://doi.org/10.1109/SC.2016.57
https://doi.org/10.1016/j.parco.2021.102831
https://doi.org/10.1177/10943420241303710
https://doi.org/10.1145/2159430.2159433
https://arxiv.org/abs/2208.04817
https://docs.nvidia.com/cuda/gpudirect-rdma/
https://docs.nvidia.com/cuda/gpudirect-rdma/
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nccl
https://doi.org/10.1109/IPDPSW.2014.111
https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html
https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html
https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/rocm.html
https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/rocm.html


CPU- and GPU-initiated Communication Strategies for Conjugate Gradient Methods on Large GPU Clusters

[49] Sreeram Potluri Pak Markthub, Jim Dinan and Seth Howell. 2022. Improving
Network Performance of HPC Systems Using NVIDIA Magnum IO NVSHMEM
and GPUDirect Async. https://developer.nvidia.com/blog/improving-network-
performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-
gpudirect-async/.

[50] Sreeram Potluri, Anshuman Goswami, Davide Rossetti, C.J. Newburn, Manju-
nath Gorentla Venkata, and Neena Imam. 2017. GPU-Centric Communication
on NVIDIA GPU Clusters with InfiniBand: A Case Study with OpenSHMEM. In
2017 IEEE 24th International Conference on High Performance Computing (HiPC).
253–262. doi:10.1109/HiPC.2017.00037

[51] S. Potluri, H. Wang, D. Bureddy, A.K. Singh, C. Rosales, and Dhabaleswar K.
Panda. 2012. Optimizing MPI Communication on Multi-GPU Systems Using
CUDA Inter-Process Communication. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum. 1848–1857. doi:10.
1109/IPDPSW.2012.228

[52] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dok-
ter, and Dieter Schmalstieg. 2014. Whippletree: Task-Based Scheduling of Dy-
namic Workloads on the GPU. ACM Trans. Graph. 33, 6, Article 228 (nov 2014),
11 pages. doi:10.1145/2661229.2661250

[53] Didem Unat, Ilyas Turimbetov, Mohammed Kefah Taha Issa, Doğan Sağbili,
Flavio Vella, Daniele De Sensi, and Ismayil Ismayilov. 2024. The Landscape of
GPU-Centric Communication. arXiv:2409.09874v2 [cs] https://arxiv.org/abs/
2409.09874v2

[54] Hao Wang, Sreeram Potluri, Devendar Bureddy, Carlos Rosales, and Dha-
baleswar K. Panda. 2014. GPU-Aware MPI on RDMA-Enabled Clusters: Design,
Implementation and Evaluation. IEEE Transactions on Parallel and Distributed
Systems 25, 10 (2014), 2595–2605. doi:10.1109/TPDS.2013.222

[55] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Singh, Sayantan Sur, and D.K.
Panda. 2011. MVAPICH2GPU: optimized GPU to GPU communication for In-
finiBand clusters. Computer Science - Research and Development 26 (06 2011),
257–266. doi:10.1007/s00450-011-0171-3

[56] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Xiangyong Ouyang,
Sayantan Sur, and Dhabaleswar K. Panda. 2011. Optimized Non-contiguous
MPI Datatype Communication for GPU Clusters: Design, Implementation and
Evaluation with MVAPICH2. In 2011 IEEE International Conference on Cluster
Computing. 308–316. doi:10.1109/CLUSTER.2011.42

[57] Adam Weingram, Yuke Li, Hao Qi, Darren Ng, Liuyao Dai, and Xiaoyi Lu. 2023.
xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep
Learning. Journal of Computer Science and Technology 38, 1 (Feb 2023), 166–195.
doi:10.1007/s11390-023-2894-6

[58] Junchao Zhang, Jed Brown, Satish Balay, Jacob Faibussowitsch, Matthew Knepley,
Oana Marin, Richard Tran Mills, Todd Munson, Barry F Smith, and Stefano
Zampini. 2021. The PetscSF scalable communication layer. IEEE Transactions on
Parallel and Distributed Systems 33, 4 (2021), 842–853.

13

https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://doi.org/10.1109/HiPC.2017.00037
https://doi.org/10.1109/IPDPSW.2012.228
https://doi.org/10.1109/IPDPSW.2012.228
https://doi.org/10.1145/2661229.2661250
https://arxiv.org/abs/2409.09874v2
https://arxiv.org/abs/2409.09874v2
https://arxiv.org/abs/2409.09874v2
https://doi.org/10.1109/TPDS.2013.222
https://doi.org/10.1007/s00450-011-0171-3
https://doi.org/10.1109/CLUSTER.2011.42
https://doi.org/10.1007/s11390-023-2894-6

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-GPU communication libraries
	2.2 Conjugate gradient methods

	3 Implementation
	3.1 Single-GPU implementation of CG
	3.2 Multi-GPU parallelization
	3.3 CG with host-initiated communication
	3.4 CG with GPU-initiated communication
	3.5 Pipelined CG

	4 Experiments
	4.1 Experimental setup
	4.2 SuiteSparse experiments
	4.3 Large-scale experiments

	5 Related work
	6 Conclusion
	References

