
Snoopie: A Multi-GPU Communication Profiler and Visualizer
Mohammad Kefah Taha Issa∗

Koç University
Istanbul, Türkiye
missa18@ku.edu.tr

Muhammad Aditya Sasongko∗
Koç University
Istanbul, Türkiye

msasongko@ku.edu.tr

Ilyas Turimbetov
Koç University
Istanbul, Türkiye

iturimbetov18@ku.edu.tr

Javid Baydamirli
Koç University
Istanbul, Türkiye

jbaydamirli21@ku.edu.tr

Doğan Sağbili
Koç University
Istanbul, Türkiye

dsagbili17@ku.edu.tr

Didem Unat
Koç University
Istanbul, Türkiye
dunat@ku.edu.tr

ABSTRACT

With data movement becoming one of the most expensive bottle-
necks in computing, the need for profiling tools to analyze commu-
nication becomes crucial for effectively scaling multi-GPU applica-
tions. While existing profiling tools including first-party software
by GPU vendors are robust and excel at capturing compute op-
erations within a single GPU, support for monitoring GPU-GPU
data transfers and calls issued by communication libraries is cur-
rently inadequate. To fill these gaps, we introduce Snoopie, an
instrumentation-based multi-GPU communication profiling tool
built on NVBit, capable of tracking peer-to-peer transfers and GPU-
centric communication library calls. To increase programmer pro-
ductivity, Snoopie can attribute data movement to the source code
line and the data objects involved. It comes with multiple visual-
ization modes at varying granularities, from a coarse view of the
data movement in the system as a whole to specific instructions
and addresses. Our case studies demonstrate Snoopie’s effective-
ness in monitoring data movement, locating performance bugs in
applications, and understanding concrete data transfers abstracted
beneath communication libraries. The tool is publicly available at
https://github.com/ParCoreLab/snoopie.

CCS CONCEPTS

• General and reference → Performance; Measurement; Met-

rics; Evaluation; • Computer systems organization → Hetero-
geneous (hybrid) systems.

ACM Reference Format:

Mohammad Kefah Taha Issa, Muhammad Aditya Sasongko, Ilyas Turim-
betov, Javid Baydamirli, Doğan Sağbili, and Didem Unat. 2024. Snoopie:
A Multi-GPU Communication Profiler and Visualizer. In Proceedings of
the 38th ACM International Conference on Supercomputing (ICS ’24), June
04–07, 2024, Kyoto, Japan. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3650200.3656597

∗These authors contributed equally

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’24, June 04–07, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656597

1 INTRODUCTION

Application development and performance scaling on multiple
GPUs is nontrivial and often require continuous profiling and de-
bugging. GPU communication mechanisms are also diverse, with
prior methods requiring data transfers to pass through the host
CPU. However, advancements in direct peer-to-peer communica-
tion technology such as NVLink and GPUDirect [24] have enabled
GPUs to communicate directly with their peers during data trans-
fers, bypassing the intermediate host buffers. These transfers can be
initiated by either the host or device and can involve direct access
to remote memory through loads or stores.

However, despite the advancements in data movement tech-
nologies, existing multi-GPU profiling tools have lagged behind,
offering limited information about data movement. Nsight Systems
[48], a performance analysis tool developed and maintained by
Nvidia, vaguely indicates the presence of device-initiated direct
memory accesses as traffic between NVLink-connected GPUs but
does not provide further information to end-users such as devices
engaged in such communication. HPCToolKit [1], which is a suite
of performance analysis tools for CPUs and GPUs, can track the
amount of data moved among devices but it is restricted to cases
where communication calls are initiated by the host. Similarly, the
majority of other profiling tools offer limited or no insights into
data movement caused by communication libraries like NVSHMEM
[44] and NCCL [53]. The latter is utilized by popular deep learn-
ing frameworks, including PyTorch [7] and TensorFlow [10], to
facilitate multi-GPU acceleration.

Furthermore, most tools [8, 31, 48, 64] including those that do
support said communication operations lack source code and object
attribution, providing an incomplete picture in their visualization.
Attributing communication to the source code and involved pro-
gram objects can greatly aid programmers in identifying scalability
bottlenecks and data movement-related bugs. As a result, a diagnos-
tic tool to address the aforementioned gaps is needed for effective
development and debugging on multi-GPU systems.

This paper presents Snoopie, a complementary profiler that is
designed specifically to address the shortcomings in existing main-
stream tools, with the issues mentioned above in mind. Snoopie
provides finer-grained information on C/C++ and Python-based
GPU applications by detecting host-initiated transfers and peer-
to-peer communication including device-initiated direct accesses,
while providing support for commonly used communication li-
braries. It can identify the data objects accessed by the inter-GPU

https://github.com/ParCoreLab/snoopie
https://doi.org/10.1145/3650200.3656597
https://doi.org/10.1145/3650200.3656597
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3650200.3656597

ICS ’24, June 04–07, 2024, Kyoto, Japan Issa et al.

Profiler

cudaMemcpy

and its family

P2P Direct

Access

Communication

Library Support

Src Code Line

Attribution

Data Object

Attribution
Visualization

Nsight Systems [48] ✓ Limited Limited - - timeline
HPCToolkit [1] ✓ - - ✓ - code-centric
ComScribe[8] ✓ ✓ only NCCL - - comm matrix

EZTrace[64] ✓ - - - - timeline and
comm matrix

Extrae[12] ✓ - - - ✓ timeline
Score-P[31] ✓ - - - - timeline

Snoopie (ours) ✓ ✓
NCCL and
NVSHMEM ✓ ✓

multi-view, code-
data-centric

Table 1: Comparing communication profiling tools for multi-GPU systems

memory operations and locate the source code lines where commu-
nication occurs. Lastly, it is equipped with a multi-view interactive
visualization module that exposes various levels of granularity for
users to obtain a broad overview of the system or a detailed view
of a specific object or device. In short, our main contributions are
as follows:

• An open-source profiling and analysis tool that captures
inter-GPU data movement with support for NCCL and
NVSHMEM communication libraries

• Support for communication association with the involved
data objects and source code origin to ease analysis and
debugging

• User-friendly visualization tool that presents GPU commu-
nication in various levels of granularity

• Methods to reduce profiling overhead to 2×-96× by on-
device filtering, compression, and sampling

• Diverse set of case studies in C/C++ and Python that covers
BFS, 2D Stencil, NCCL bandwidth test, and a Deep Learn-
ing CosmoFlow [36] model in PyTorch. to demonstrate the
different capabilities of the tool.

While Snoopie is not intended to replace established profiling
tools such as Nsight Systems, it complements them by filling a sig-
nificant gap in the GPU tool portfolio. With a recent shift towards
greater GPU autonomy, where devices directly manage commu-
nication [13, 23, 33], and the widespread use of communication
libraries like NCCL and NVSHMEM, Snoopie becomes an impor-
tant addition to the GPU toolset. It aids both application users and
developers in effectively pinpointing communication bottlenecks
and optimizing their code to achieve better performance. Lastly,
although Snoopie’s current implementation targets NVIDIA GPUs,
many of our contributions are architecture-agnostic and can be
adapted to other GPU vendors.

2 MOTIVATION: IDENTIFYING GAPS

Several profiling tools have been created for GPUs, with the main
emphasis on examining the performance of computational kernels,
with varying degrees of support for profiling communication calls.
Table 1 lists some of these tools and their support for various aspects
of communication profiling. However, we have identified certain
gaps in their capabilities, including:

• Gap 1: Detecting different types of GPU-GPU communica-
tion including peer-to-peer (P2P) direct accesses to remote
GPU memory

• Gap 2: Tracking data movement induced by communication
libraries such as NVSHMEM and NCCL

1

1. __global__ int update_push_flags(int *on_local, int *on_remote) {
2. const int idx = blockIdx.x * blockDim.x + threadIdx.x;
3. on_local[idx] = on_remote[idx] + 2;
4. }

(a) How P2P direct access appears in Nsight Systems

2

3

1. for (int g = 0, g < nGPUs; g++) {
2. ncclSend(sendbuff[0], size, ncclInt, g, comms[g], s[g]);
3. ncclRecv(recvbuff[g], size, ncclInt, g, comms[g], s[g]);
4. }

(b) How NCCL Send/Receive appears in Nsight Systems

Figure 1: Communication profiling in Nsight System. Figures

are available under CC-BY [28].

• Gap 3: Ability to associate communication with the involved
data objects and source code lines

• Gap 4: Granular visualization support for data movement
for analysis and debugging

Gap 1: Detecting different types of GPU-GPU communica-

tion. CUDA provides several communication methods to facilitate
data transfers among GPUs. The standard host-side API for data
movement from one device to another is the cudaMemcpy family of
calls, which are tracked by most existing profilers with the help of
the CUDA runtime API. The same API allows peer-to-peer com-
munication initiated by the host through cudaMemcpyPeer which
utilizes DMA engines to perform data movement. Such communi-
cation can also be device-initiated when shared address space is
available, where devices can directly load/store from/to another
GPU’s memory without involving the host [58]. This form of direct
communication has gained prominence as more GPUs per node
can be tightly connected via high-speed interconnects, facilitating
low-latency access to peer GPUmemories. P2P transfers also enable
persistent kernels to communicate without termination, resulting

Snoopie: A Multi-GPU Communication Profiler and Visualizer ICS ’24, June 04–07, 2024, Kyoto, Japan

in fewer kernel launches, synchronization, and reduced networking
overheads [6, 23, 24, 27, 33, 54, 55, 58].

Despite their importance, existing profiling tools currently lack
support for device-initiated transfers, and only monitor host-
initiated peer transfers. For example, NVIDIA’s Nsight Systems
[48] does not provide information on the effective addresses ac-
cessed by device-initiated remote memory operations or the devices
that are the targets of the operations. Instead, its output as shown
at 1○ in Figure 1a only indicates the occurrence of P2P accesses
through a bump in NVLink traffic for a remote read. HPCToolKit
[1], another commonly used HPC profiling tool, does not provide
any information that could indicate the occurrence of P2P direct
accesses.

Gap 2: Communication Library Support. NVIDIA provides
two first-party communication libraries for multi-GPU applica-
tions: NVIDIA Collective Communications Library (NCCL) and
NVSHMEM. NCCL supports both collective communication and
point-to-point send/receive primitives for multi-GPU and multi-
node systems. It has seen wide adoption in popular deep learning
frameworks such as MxNet [18], PyTorch [7], and TensorFlow [10],
which use it to accelerate distributed training. NVSHMEM extends
the OpenSHMEM specification [57] to support NVIDIA GPUs and
utilizes a global address space accessible with a fine-grained GPU-
side API. [44, 58]. While Nsight Systems recognizes both NCCL
and NVSHMEM calls, it only provides timeline information. Figure
1b highlights the basic profiling information gathered by Nsight
Systems at points 2○ and 3○ - showing only the timespan of NCCL
calls, with no further information about the underlying properties
of the operations.

Gap 3: Code Line and Object Attribution. Associating pro-
filed communication operations with their source code origin
and the involved data objects can aid programmers in identifying
communication-related bugs and performance bottlenecks. Among
the profiling tools listed in Table 1, we only identified two that
provide this information: Extrae [12] and HPCToolkit. While Ex-
trae can attribute data movement to data objects, this feature is
limited to CPUs and there is no attribution for source code lines.
HPCToolkit, on the other hand, is able to attribute communication
to source code lines but lacks support for objects. Moreover, to the
best of our knowledge, there are no tools that support code line
and data object attributions in multi-GPU Python programs. Given
the widespread use of Python in HPC and AI, such tooling becomes
essential for GPU profiling in communication-heavy applications
with complex codebases.

Gap 4: Data Movement Visualization. Current tools are gen-
erally multipurpose, and as a result, their visualization may not
be specifically tailored to highlight data movement. Illustrated in
Figure 1, most tools, including Nsight Systems, predominantly pro-
vide an overview of the execution time of profiled applications
and offer, arguably, less informative representations of data trans-
fers. Eztrace[64] and ComScibe[8] present a coarse-grained view
of data movement in the form of a communication matrix. Hav-
ing finer-grained information would assist users in understanding
multi-GPU communication patterns, object access behaviors, and
locating bottlenecks in their applications.

In summary, existing GPU profiling tools have limitations in
offering a comprehensive understanding of inter-device commu-
nication in multi-GPU applications. Snoopie aims to fill the afore-
mentioned gaps and provide an alternative perspective on commu-
nication analysis for end-users.

3 SNOOPIEWITH MULTI-VIEW VISUALIZER

Snoopie is a binary instrumentation tool that provides a data-
centric and user-friendly way to monitor and analyze device-to-
device communication. By tracking the source and destination de-
vices of memory operations, the effective addresses, the amount of
data transferred, the source code lines, and the accessed data objects,
it provides a comprehensive overview of GPU communication.

Snoopie provides multiple intuitively understandable ways of
visually representing the data transfers. The visualization module
presents the logged information in an interactive manner, enabling
users to track and analyze the data movement between GPUs. It
offers different levels of granularity to allow for both a coarse-
grained overview of the system and a detailed view of a specific
object or device.
• System view. Figure 2A shows the system-wide overview of

communication performed by each device and between each
pair of devices. The data is displayed both as an interactive
graph 1○ and as a heatmap 3○, and can be exported in textual
format. Each graph node represents a device, while the edges
between the nodes reflect the performed data movement. The
information can be shown in terms of both the number of data
transfers as well as the volume of transferred data in bytes 2○.

• Object view. Figure 2B presents a representation of data objects
on multiple granularities so that the number of operations for
each specific memory address can be tracked. As can be seen in
1○, each GPU has its separate object view tab. On each tab, there
are objects’ address spaces represented as a 1D heatmap, where
the information about the memory operations on each address
can be viewed by hovering over the heatmap cells 2○. This in-
formation includes the memory address, types of instructions
performed, the remote GPU IDs participating in the communi-
cation, and source code line numbers of the memory operations.
Additionally, for each object, a 2D view 3○ option is available.
In 2D view, the user can provide the desired dimensions.

• Code view. Figure 2C shows a view that allows to pinpoint
the source code lines of the captured inter-GPU remote mem-
ory operations. It provides information about the amount of
communication performed at each line 1○. Code lines where
communication is being performed are highlighted and the total
amount of communication is shown as a percentage of the total
number of data transfers. Upon clicking on a line that is in-
volved in communication, a detailed view shown on the sidebar
2○ reveals the total number of remote memory operations for
each line as well as a system-wide communication heatmap 3○
similar to the one provided in System View. Additionally, since
multiple objects can be accessed in a single line, information
about the objects involved in communication is provided on the
sidebar as well.

• Device view. Figure 2D represents a brief overview of the re-
mote memory operation types (load/store) and the accessed

ICS ’24, June 04–07, 2024, Kyoto, Japan Issa et al.

offset

Data transfer
count

Data transfer
count

Data transfer
count

Choose an object to view in 2D X- dimension

 GPU1 GPU2 GPU3

 GPU0

GPU1

GPU2

GPU3

Owner

Is
su

ed
 b

y

flags 16
GPU1 GPU2 GPU3GPU0

The same data
represented as a heatmap

3

Sidebar shows detailed
info for each chosen line

2

Line 88 is launched on
all devices other than

the last one due to the if
condition on line 85

The heatmap shows no
transfers issued by GPU3,

explained by 3

Objects of a chosen GPU are
represented as 1D heatmaps

1

 On hover, detailed
data about each

element is shown

2

A 2D view allows to
transform the 1D

heatmaps into 2D by
providing the
dimensions

3

3

Shows the memory operations
performed by the device

Communication units

Data transfers Bytes

Node sizes and edge
widths represent
communication

volume
1

The data can be presented as
number of data transfers or bytes

2 C. Code view

D. Device view

A. System view

B. Object view

v_adj_begin

v_adj_length

flags

loc_in_queue

loc_out_queue

glob_queue

queue_to_push

result

v_adj_list

Shows which remote
objects are accessed by

the chosen GPU

Shows code lines where
the accesses are performed

2

1
On click, code line details
are shown on the sidebar

4

*

*

*

The code view shows
the communication
volume for each line

1

Figure 2: An example of Snoopie’s multi-view visualizer. Figures are available under CC-BY [28].

remote objects for each device. While the object view displays
objects allocated on a selected GPU and the details regarding re-
mote accesses of these objects by other devices, the device view
complements it by instead showing the data transfers performed
by the selected GPU itself. It contains object 1○ and instruction
2○ tables, representing the data access counts of remote objects
and the performed instruction types. Moreover, it includes the
source code line numbers 3○ to facilitate debugging. On click, a
code line number opens the detailed view of the code line 4○,
the same as the one in the Code View.

4 IMPLEMENTATION OF SNOOPIE

Figure 3 shows the workflow of Snoopie. It starts by instrumenting
the executable, such that subsequent CUDA runtime calls will go
through Snoopie first, which is then fed to the CUDA runtime and
its driver. When a kernel executes on the GPU, Snoopie’s instru-
mented code inspects the remote load and store instructions, which
are then registered to a message buffer in the global memory of the
device. Once the buffer is full, it is flushed to the host for process-
ing. Snoopie attributes remote accesses to the source/destination
device and associates the effective addresses with the data object
in the executable. For other multi-GPU communication methods
beyond device-initiated direct access, Snoopie provides support
for host-initiated transfers. To capture these transfers, Snoopie
instruments the cudaMemcpy* family of functions. As these func-
tions are executed on the host, no further device instrumentation is
necessary. In the final step, Snoopie generates a log file containing
trace information for offline analysis and visualization.

To develop Snoopie, one can utilize profiling interfaces like
CUPTI API[46], Computer Sanitizer[40], or NVBit [67] designed for
NVIDIA GPUs for data movement analysis. Key requirements for
Snoopie include instrumenting direct memory accesses and tracing
CUDA runtime events. CUPTI can trace CUDA runtime events
through its lightweight sampling API, but it lacks in capturing direct
memory accesses. On the other hand, Compute Sanitizer, based on
binary instrumentation, can monitor load/stores, including remote
ones, but it operates at a module level and not at a function or kernel
level. NVBit, a dynamic binary instrumentation framework, excels
in granularity, allowing precise instrumentation of specific kernels
or functions instead of entire modules. Its ability to trace CUDA
API events and kernel launches aligns well with our requirements,
making it a more suitable choice for Snoopie.

4.1 Capturing P2P Communication

To profile device-initiated remote memory operations, Snoopie re-
lies on NVBit [67], enabling the insertion of instrumentation code
into application binary code. NVBit provides built-in functions that
disassemble binary instructions, extracting details about the exe-
cuted operations. Utilizing this information, we identify memory
accesses, discerning between reads and writes, and capturing effec-
tive addresses. Illustrated in Figure 3 (1○ and 2○), for each identified
memory access instruction, we inject a function to record the ex-
tracted information in a buffer. This injected function is invoked
just before load/store operations, facilitating inspection (4○). Sub-
sequently, local addresses are disregarded through address filtering
(5○), allowing only remote addresses to proceed. In the next step,

Snoopie: A Multi-GPU Communication Profiler and Visualizer ICS ’24, June 04–07, 2024, Kyoto, Japan

NVBit: Binary
Instrumentation

Host GPU 0

Kernel
Data movement instructions

GPU Memory

LDG.E 0x7f7f8800

Message Buffer

`

LDG.E 0x7f7f8800
device id: 0

memory owner id: 1

Device Attribution

STG.E 0x7f7f9dc0
device id: 1

memory owner id: 0

Visualizer

 "op": "LDG.E",
 "addr": "0x7f7f8800",
 "allocation_pc": 0x55b47026",
 "variable_name": flags",
 "file_name": workq_ring.cu",
 "func_name": workq_ring",
 "line_num": 501",
 "running_device_id": 0,
 "mem_device_id": 3

Inspection

LDG.E 0x7f7f8800
device id: 0

memory owner id: 1

STG.E 0x7f7f9dc0
device id: 1

memory owner id: 0

STG.E 0x7f7f9dc0

GPU 1

Message
Buffer

Log file

GPU Memory

Kernel
Data movement

instructions

Log
Compression

Object
Attribution

Snoopie

Remote Local

components

Data movement instructions

Color legend

Object Data

Data
transfer

7

8

2

10

9

11

1
Message Buffer

Filtering

LDG.E 0x7f7f8800 STG.E 0x7f7f9dc0

LDG.E 0x47026a50 STG.E 0x4702542b

5

Sampling6

4

CUDA Runtime
and GPU Driver 3

Figure 3: Overview of Snoopie and its components. Figures are available under CC-BY [28].

filtered addresses are sampled if the sampling feature is enabled
(6○).

A channel mechanism in NVBit facilitates the communication
of captured information to the host. To minimize data movement
overhead, we establish the channel with double buffers in device
memory. Not all threads contribute to the channel; instead, within
each warp, a single thread compiles memory addresses targeted by
memory operations from all other threads in the warp, creating a
single message for the entire warp. Thus, each message encapsu-
lates up to 32 memory locations, corresponding to the warp size.
Upon channel saturation, the buffer is switched, and the full buffer
is transmitted to host memory using a flag implementation that
triggers a cudaMemcpyAsync operation, depicted in 7○.

4.2 Device Attribution

The message buffer contains a list of remote addresses accessed dur-
ing kernel execution, which need to be mapped to corresponding
device IDs. The device attribution in Snoopie determines the device
to which a pointer value belongs. This capability is facilitated by the
support for Unified Virtual Addressing (UVA) provided by NVIDIA.
UVA enables device pointers for different devices on the same node
to share a common address space. Consequently, the cuMemAlloc
operations utilize the same address space for pointer values allo-
cated across various devices. This shared address space ensures
that if a pointer region is associated with device 𝐴, any subsequent
allocation on device 𝐵 will not return an address overlapping with
the region allocated on device 𝐴. This inherent property allows for
the clear identification of the device to which a pointer belongs.
Snoopie captures memory ranges allocated for each device when-
ever a cuMemAlloc call is issued by the executable to the CUDA
driver and the device ID of the context in which the call is made.

To perform device attribution, Snoopie parses each message re-
ceived via the message buffer, as can be seen in Figure 3 in 8○, and
determines the region to which each pointer belongs by compar-
ing it with the data obtained from the instrumented cuMemAlloc
operations. Load/store operations that are a null or empty pointer

Local Addr Space Remote Address Space

0x100200 0x120200 0x140200 0x160200 0x180200

For GPU 0

For GPU 1

For GPU 2

For GPU 3

GPU0 GPU1 GPU2 GPU3

GPU3

GPU2

GPU3GPU1 GPU0 GPU2

GPU2 GPU0 GPU1

GPU3 GPU0 GPU1

Range 1 Range 2 Range 3 Range 4

Local Addr Space Remote Address Space

0x100200 0x120200 0x140200 0x160200 0x180...

For GPU 0

For GPU 1

For GPU 2

For GPU 3

GPU0 GPU1 GPU2 GPU3

GPU1

GPU2

GPU0GPU1 GPU2 GPU3

GPU2 GPU3 GPU0

GPU3 GPU0 GPU1

Range 1 Range 2 Range 3 Range 4

NVSHMEM 2.7 NVSHMEM 2.8/2.9

Figure 4: NVSHMEM address space. Figures are available

under CC-BY [28].

value are ignored. This is because some threads within a given
warp might not be performing a memory operation. The filtered
information is then converted into CSV format and is fed into a
Zstandard compression stream before it is pushed to the log to be
used by the visualizer.

Snoopie uses the approach described above instead of relying
on cuPointerGetAttribute to obtain information about pointers
received from the device. While this CUDA API can provide useful
information about a pointer, including its device, base address, and
memory type, it may not be able to determine the device ordinal if
the memory pointed to by the pointer has already been freed. Our
alternative approach enables Snoopie to overcome this limitation
by leveraging memory range to device mappings, which persist be-
yond the lifetime of the memory allocation itself. However, for host-
initiated transfers, Snoopie employs cuPointerGetAttribute for
device attribution because Snoopie can guarantee that the instru-
mentation of cudaMemcpy* functions occurs before any pointer
is deallocated, allowing for accurate device attribution in these
scenarios.

4.3 NCCL and NVSHMEM Support

As NCCL and NVSHMEM are becoming more popular for scaling
deep learning and HPC applications to multiple GPUs, profiling

ICS ’24, June 04–07, 2024, Kyoto, Japan Issa et al.

their communication is essential. NCCL performs communication
using device-initiated direct accesses, as a result, Snoopie can sup-
port NCCL directlywithout requiring special handling. Even though
NVSHMEM also utilizes device-initiated direct accesses for many
of its communication calls, it demands special handling due to its
symmetric memory layout and the way peers communicate with
each other.

In NVSHMEM, each device has a base address for its address
space, and it designates a portion of this address space for each
peer. However, the designations for each peer’s address space may
not match between peers. Figure 4 illustrates the virtual address
spaces of each GPU to access other peers within the same node
for NVSHMEM v2.7, 2.8 and 2.9. For example, in NVSHMEM 2.7,
accessing GPU2 from GPU1 would appear as a load/store operation
in Range 3, while accessing the same variable on GPU2 from GPU3
would appear as a load/store operation in Range 4. This method of
segmenting the address space makes it non-trivial for our proposed
approach to work, as multiple addresses point to the same physical
address.

To resolve this issue and add device attribution support for
NVSHMEM, Snoopie captures the identifier of the NVSHMEM
Processing Element (PE) responsible for executing the direct access
operation. An NVSHMEM PE refers to the process that forms an
NVSHMEM job. By utilizing the PE identifier along with the cap-
tured memory address, Snoopie is able to determine the device on
which the respective memory address resides by taking the address
spacing rules illustrated in Figure 4 into account.

4.4 Source Code Line Attribution

To associate inter-GPU memory operations to their respec-
tive locations in kernel source code, Snoopie employs NVbit’s
nvbit_get_line_info function to extract line information from
each instrumented binary instruction. However, it should be noted
that NVBit faces limitations in extracting this information from
a significant portion of instructions. To overcome this limitation,
Snoopie additionally utilizes nvdisasm [45] to obtain mapping in-
formation between PTX assembly instructions and CUDA source
code lines. Given that NVBit supports the disassembly of instru-
mented instruction binaries into their SASS assembly instructions,
Snoopie leverages this mapping information by matching a disas-
sembled SASS instruction with its PTX version, which has been
previously mapped to a source code line in the output of nvdisasm.
This pattern matching between SASS and PTX instructions is only
performed when nvbit_get_line_info fails to extract the code
line information.

4.5 Data Object Attribution

To identify data objects that are accessed during communication,
we developed Snoopie with the data object attribution ability. This
feature consists of two phases: (1) object recording phase, and (2)
object mapping phase.

4.5.1 Object recording phase. The object recording phase is illus-
trated in Figure 5. During the application execution, Snoopie in-
tercepts function calls for dynamic memory allocations such as
cudaMalloc and cudaMallocHost using a callback function that
is inserted to the address space of the profiled process using the

Offset: &h0
Length: buf_size

Object ID: 2

int foo ()
{
. . .
cudaMalloc(&h0, buf_size); // line 9
. . .
}

nvbitCallback (devPtr, size)
{
. . .
recordAddressRange(devPtr, size);
getCallStack();
. . .
}

Offset: xx
Length: yy

Object ID: 1

Offset: vv
Length: zz

Object ID: 1

Profiled code: foo.cu callback function in SNOOPIE

Tree of
address
ranges Table of data objects

1

3
2

Offset: 0xffb6
Length: 8

Instruction: 0xfa

__global__
void kernel1 (int *dst1)
{

…
dst1[idx] = …;
…

}

Profiled GPU kernel SNOOPIE

….
0xffba
….

Offset: xx
Length: yy

Instruction: 0xfc

Offset: vv
Length: zz

Instruction: 0xfd

Tree of address ranges

instruction file function line variable

0xfa foo.cu main 2 h0

Table of data objects

…
0xffba, 0xfa, foo.cu, main, 2, “h0”
…

1

4

4

3

2

Log FileObject ID Call Stack

1 . . .

2 foo.cu|foo|9,main.cu|main|5

Figure 5: Object recording phase of data object attribution.

Figures are available under CC-BY [28].

LD_PRELOAD utility[39] in Linux. This callback function calls the
original allocation function and records the offset address and byte
length of the memory region in a global splay tree (tree of address
ranges), where each node corresponds to an address range generated
by the memory allocation call as shown in Figure 5 2○. In addition
to these pair of offset and byte lengths, each node also records an
object ID that uniquely identifies the call stack information of the
memory allocation call.

We define a data object in our profiling as the call stack of a
memory allocation call, encompassing information about the file
name, function name, and line number. According to our definition,
a data object can be associated with multiple non-contiguous mem-
ory regions. This situation arises when there are multiple memory
allocation calls sharing the same call stacks, such as a cudaMalloc
being repetitively called within a loop. To mitigate redundancy in
the tree of address ranges, we store the details of memory allocation
call stacks in a separate hash table, the table of data objects, where
each entry corresponds to a unique call stack, identified by an object
ID that serves as the primary key.

To enhance the debugging process, we have introduced custom
wrapper allocation functions enabling programmers to include the
variable name, associated with the address range, as a function
argument. With this additional information, Snoopie incorporates
variable names into the visualization, aiding users in a clearer un-
derstanding of object attribution.

4.5.2 Object mapping phase. Snoopie intercepts memory opera-
tions during the runtime of profiled applications, logging the mem-
ory addresses accessed in these operations. Upon the completion
of an application run, Snoopie processes the logged data. At this
stage, each recorded memory address undergoes a query in the tree
of address ranges to determine the corresponding address range it
belongs to. Once Snoopie identifies the relevant node in the tree,
it utilizes the object ID within the node to query the corresponding
object in the table of data objects. Subsequently, Snoopie includes
the retrieved entry in the log file.

4.6 Support for Profiling Python Programs

Snoopie supports communication detection for Python applica-
tions, with specific considerations for code line and object attribu-
tions. These attributions are presently available for Python codes

Snoopie: A Multi-GPU Communication Profiler and Visualizer ICS ’24, June 04–07, 2024, Kyoto, Japan

using Numba [9] or PyTorch [9]. For code line attribution in Numba-
decorated functions, Snoopie leverages Numba’s feature that gener-
ates line info in dispatched CUDA kernels. By enabling this feature,
Snoopie can extract line info for each instruction using NvBit’s
nvbit_get _line_info. To extend support for source code line
attribution in PyTorch programs, Snoopie captures the call stacks
of profiled Python code during the interception of NCCL kernel
launches within PyTorch. This information enables Snoopie to
attribute the communication detected in the launched NCCL ker-
nels to the specific lines in the Python code that trigger the kernel
launches.

For data object attribution, Snoopie logs the allocated address
ranges by instrumenting calls to the memory allocation functions
of Numba and PyTorch. To enable the instrumentation of Python
function calls within Snoopie, we employ the pybind11 library and
the C API of Python. This combination facilitates interoperability
between Python libraries and the C++ code of Snoopie.

4.7 Reducing Profiling Overhead

Binary instrumentation and monitoring every memory access not
surprisingly leads to runtime overhead.We implement several meth-
ods to lower this overhead.
• On-Device Filtering: Initially, Snoopie transmitted all mem-

ory operation records from the instrumented functions to the
host. Subsequently, the host filtered these records to retain only
the remote accesses. However, this approach posed challenges
for certain applications, like stencil, where non-remote memory
operations significantly outnumbered remote ones. To over-
come this issue, Snoopie performs the filtering directly on the
device-side and sends only the remote records to the host, elimi-
nating unnecessary data movement. The filtering is done by the
first active thread within the warp, responsible for placing ad-
dresses into the communication channel with the host. Instead
of placing all addresses onto the channel, the warp’s first active
thread checks each address against an on-device maintained
list of memory allocations that occurred on the host and the
devices they belong to. If a remote address is found, the group of
addresses are placed on the channel. Otherwise, the addresses
are discarded.

• Sampling: To minimize runtime overhead and decrease log file
size further, we incorporated an optional sampling technique for
capturing remote memory operations. This method is integrated
into the callback function, which is triggered when a remote
memory operation takes place on a GPU. Within the callback
function, a pseudo-random number is generated and compared
to a threshold specified by the user. If the generated number
is lower than the threshold, the callback function records the
interceptedmemory operation and sends it to themessage buffer,
as shown in 6○ in Figure 3. Conversely, if the generated number
exceeds the threshold, the intercepted operation is discarded.
Note that sampling is performed after on-device filtering so as
not to adversely affect the accuracy.

• Log Compression: As the tool can monitor and record millions
of memory operations, we utilize compression to reduce the
size of the logs. This results in a significant reduction, shrinking

the accumulating logs from 0.5 gigabytes for 5 million records
down to 7 megabytes.
Moreover, the programmer can reduce the overhead by narrow-

ing down the scope of profiling either by selecting a specific device
function to monitor or by isolating the communication code to
its own device function. A user can also wrap cudaMalloc calls
for data objects of interest so that Snoopie only monitors those
memory regions.

4.8 Discussions on Limitations

Snoopie currently focuses on intra-node multi-GPU setups, mean-
ing it does not support NVSHMEM usage in a multi-node GPU
cluster at this time. A similar constraint applies to NCCL applica-
tions that utilize MPI; Snoopie only supports NCCL when used
within a single OS process. This limitation also impacts future com-
patibility with PyTorch distributed training applications that rely
on NCCL with MPI, underscoring the importance of supporting
MPI-utilizing applications in our upcoming efforts. However, this
limitation does not apply to NVSHMEM for multi-process single-
node usage. Nonetheless, we anticipate no technical obstacles in
extending Snoopie to multi-node configurations in the future.

Timeline information falls outside the scope of Snoopie. Its in-
tended use complements the existing GPU tooling landscape, which
already includes timeline information through tools like Nsight Sys-
tems.

While Snoopie is developed for the CUDA environment at this
time, it can be extended to support AMD GPUs. ROCm provides
analogous methods of GPU-initiated communication with both P2P
RDMA [2] and GPU-centric APIs - RCCL (NCCL equivalent) [4] and
ROC_SHMEM [5] (NVSHMEM equivalent), and supports runtime
and binary instrumentation [3].

5 EVALUATION

This section evaluates the effectiveness of Snoopie and demon-
strates its usability, accuracy, debugging aid, and overhead with four
use-cases. The evaluation will focus on Breadth-First Search (BFS),
2D Stencil Jacobi, an AllReduce benchmark from NCCL tests[43],
and CosmoFlow [36] The experiments are conducted on a node
with 8x Nvidia Ampere 100 GPUs, with an AMD 7763 64-core pro-
cessor. All the experiments are done without sampling enabled and
with device-side filtering unless otherwise stated.

5.1 Breath-First Search (BFS)

BFS traversal is an algorithm that is commonly used to traverse
and search graph-like data structures. Despite following a simple
principle of traversing nodes level by level, it has irregular commu-
nication patterns. Therefore, BFS is particularly useful for analyzing
communication. The BFS implementation in use is based on a ring
principle and leverages the device-initiated P2P direct remote mem-
ory access to communicate between the GPUs. Devices exchange
data in a ring manner by reading from globally accessible buffers,
while the order is ensured by passing flags.

Demo 1. Observing the communication patterns and de-

bugging. This demonstration is run on a small graph containing
only 12 nodes for better traceability. The communication pattern in
a system-wide view on Figure 6a shows that mostly the neighboring

ICS ’24, June 04–07, 2024, Kyoto, Japan Issa et al.

Device view shows
the corresponding

object 2

Inspecting the code
reveals the lack of

cudaSetDevice function
3

This edge implies
incorrect pattern of

communication 1

Correct
communication

pattern
4

498. for (int device = 0; device < N_GPU; device++)
499. {
500. cudaSetDevice(device);
501. cudaMalloc(&all_flags[device], sizeof(volatile int *) * N_GPU);
502. cudaMemcpy(all_flags[device], flags, sizeof(volatile int *) * 498.N_GPU);
503. }

(a) Demo 1: Fixing a bug with the help of Snoopie

Choose an object to view in 2D

This unused area
suggests over-

allocation of memory

The number of data
transfers (for this

graph size) shows the
drawback of ring
communication

glob_queue[device] 320

X- dimension

Show in 2D

1
2

(b) Demo 2: Analysis of a ring execution model

Figure 6: Use cases of Snoopie: a BFS example. Figures are

available under CC-BY [28].

devices are communicating with each other. Yet, there is an arrow
1○ representing communication between devices 1 and 3, which are
not neighbors, thus not expected in a ring communication. The ob-
ject view and the device view can give further hints on the possible
reason for such behavior 2○, highlighting an object associated with
the excess communication and pointing out that the data is being
read from GPU3. Closer inspection 3○ of the object’s allocation
reveals that although all the objects are allocated on their corre-
sponding devices correctly, the pointer array to all devices’ flags is
allocated only on GPU3. Therefore, all the flag updates incorrectly
require getting the flag pointer from GPU3 by all the devices in the
system. Proper allocation of the pointer array solves the issue 4○
and removes the excess transfers.

Demo 2. Performance bottleneck detection. For a use case
that involves analysis of issues on a larger scale we use a bigger
graph web-BerkStan with around 670K nodes. Figure 6b shows the
Snoopie output. The resulting amount of communication in the
system turns out to be almost twice the number of vertices. The
sheer amount of transferred data is not problematic, since commu-
nicating the node data requires transferring 2 values: the node index
and its depth. However, all communications need to pass through a
ring 1○ yielding excess transfers. This fact suggests usage of direct
transfers between the devices with buffers for each device pair at
the cost of finding the nodes’ owners. Moreover, inspection of the
ring buffer in 2○ shows that the allocated buffer space for this graph

1. def jacobi_2d(A: real[N], A_new: real[N], my_pe, top_pe, bottom_pe):
2. for _ in range(100):
3. A_new[1:-1, :] = 0.2 * (A[...])
4. putmem(A[-1, :], A[1, :], top_pe);
5. putmem(A[1, :], A[-1, :], bottom_pe);

Programmer introduced a
bug by using the wrong

index

Figure 7: Demo 3: Debugging an erroneous halo region of a

2D stencil computation using Snoopie’s object view. Instead

of C++, simplified Python code is shown for clarity. Figures

are available under CC-BY [28].

TREE* (chain)
All- Reduce

RING
All- Reduce

Figure 8: Demo 5: Comparing NCCL All-Reduce with Tree or

Ring algorithms. Figures are available under CC-BY [28].

is much larger than required, suggesting memory consumption for
communication buffers could be reduced.

5.2 2D Stencil Computation

The stencil computation involves updating the value of each ele-
ment on a grid based on the values of its neighboring elements,
typically within a fixed-size window. These computations are com-
monly found in scientific applications and image processing. Our
evaluation uses a 5-point 2D star stencil operation over a domain
of 10242 which is divided over 8 GPUs on the y-axis such that each
GPU operates on an array of size 1024 ∗ 128. We experimented
with two variants of the kernel; i) Stencil-p2p is based on the im-
plementation by NVIDIA [42] that uses the device-initiated P2P
communication model across GPUs. ii) Stencil-NVSHMEM is same
as Stencil-p2p, however, uses NVSHMEM implementation provided
by NVIDIA [41].

5.3 AllReduce from NCCL

NCCL is a communication library that uses different underlying
algorithms depending on the supplied load. In this demo, we focus
on one collective communication primitive, namely AllReduce,
which offers different algorithms including RING and TREE. The
TREE algorithm, introduced in NCCL 2.4, is designed to improve
scalability and performance for small and medium-sized operations
by using a double binary tree which appears as a chain/list when
running in a single node to implement all_reduce, with each rank

Snoopie: A Multi-GPU Communication Profiler and Visualizer ICS ’24, June 04–07, 2024, Kyoto, Japan

sending and receiving 2𝑁 , except for the edges which exchange 𝑁
where 𝑁 represents the size of the data being reduced. The RING
algorithm, on the other hand, transmits data in chunks around the
ring, with each rank sending data to the next and receiving data
from the previous rank to achieve maximum bandwidth. As NCCL
can switch between algorithms based on latency and bandwidth
requirements of the target platform, it might be valuable for the
user to know which algorithm is being used for the communication
operation.

Demo 5. NCCL communication visualization. We ran the
all_reduce NCCL test code with the output shown in Figure 8.
The system view of Snoopie enables users to observe the chain
structure when the TREE algorithm is used. Note that this is the
expected behavior of TREE within a single node. The visualizer also
displays the communication size of each GPU node, indicating how
GPU0 and GPU7 are smaller than the other GPUs when using the
TREE algorithm, as expected for the ends of the chain. In contrast,
the visualizer shows almost equivalent sizes for all nodes when
using the RING algorithm.

5.4 CosmoFlow

CosmoFlow is a distributed deep learning application built to predict
cosmological parameters given 3D matter distribution data [36]. In
order to ensure compatibility with Snoopie and to show different
possible communication patterns, we port the PyTorch model to
use a single process and implement two versions - Data Parallel
and Model Parallel.

Demo 6: Comparing data vs model parallelism. The Data
Parallel implementation utilizes built-in automatic parallelism func-
tionality in PyTorch and splits the model and the data across devices.
The communication generated uses NCCL and we observe a bal-
anced chain shown in Figure 9a.

Our naive Model Parallel implementation, on the other hand,
requires manual assignment of model layers to devices and is more
susceptible to issues with balancing. Our port uses a naive strategy
of sequentially assigning layers to subsequent devices. In contrast to
the Data Parallel implementation that splits data across devices, the
Model Parallel implementation requires the placement of all tensors
in a single GPU, which in our case is GPU 0. The centralized location
of allocated memory in a single GPU causes the model layers in
all of the other devices to read/write into the memory of GPU 0
as shown by the pattern in Figure 9b. Through this experiment,
we note that Snoopie can greatly aid in mapping communication
among devices and comparing the communication patterns between
different parallelization strategies.

5.5 Overhead and Accuracy

Snoopie is accurate, but being an instrumentation-based tool, it
introduces runtime overhead to the profiled application. Figure 10
shows the performance slowdown compared to the baseline with-
out instrumentation. Note that Overhead measurements include
the log compression time. The overhead of Snoopie is much higher
on NCCL due to the huge number of memory allocations on GPUs
that NCCL does in its implementation of collective communication
functions. Since Snoopie captures the allocated address ranges to
detect inter-GPU remote accesses, this high number of memory

(a) Data Parallel (b) Model Parallel

Figure 9: Demo 6: PyTorch implementations of Cosmoflow

utilizing different parallelization strategies. Figures are avail-

able under CC-BY [28].

Figure 10: Overhead comparison of Snoopie compared to

uninstrumented code. The Y-axis is log-scaled. Figures are

available under CC-BY [28].

allocations affects the profiling overhead. Performing device-side
filtering of the remote operation results in a 1.8× improvement
compared to filtering on the host, without compromising the pro-
filing accuracy. This optimization also applies to other use cases,
albeit to a lesser extent. Specifically, when the device-side filtering
optimization is applied, the overhead of Snoopie is 16×, 2.04×, 96×,
and 16.4× for Stencil, BFS, and NCCL, respectively.

To further reduce overhead, sampling-based profiling can be
employed but may lower Snoopie’s accuracy. This approach shows
much more impact on stencil than the other benchmarks due to
Snoopie’s memory-intensive nature and numerous local loads/s-
tores, which Snoopie discards when these accesses are not sampled.
While the overhead of on-device filtering, 1/10 sampling rate, and
1/100 sampling rate are nearly the same for BFS, NCCL, and SpMV,
the overhead on stencil shows gradual reduction with an overhead
of 9.6× on 1/10 sampling rate and 8.5× on 1/100 sampling rate.

There are cases in which the majority of the overhead was caused
by the massive size of communication reported and the processing
and logging following it. In these cases, adjusting the sampling
parameter and the profiling method did not achieve notable im-
provements, as the overhead ranged between 10× and 20× though
we argue that the real execution time is reasonable.

Next, we evaluate the accuracy of Snoopie in capturing commu-
nication when monitoring the Stencil-p2p code with and without
sampling. Figure 11 displays the captured communication matrix
with the exact profiling and when the sample size is 10% of all mem-
ory operations. The patterns are similar though the variation of
color indicates that the communication volumes among GPU pairs
are less balanced in the sampling-based profiling, which results
from the stochastic nature of the sampling mechanism.

ICS ’24, June 04–07, 2024, Kyoto, Japan Issa et al.

Figure 11: a) Exact profiling, b) Sampling-based profiling.

Figures are available under CC-BY [28].

The forthcoming efforts will concentrate on improving the over-
head of Snoopie while preserving its accuracy. Additionally, we
offer both exact and sampling profiling modes, enabling program-
mers to choose between more detailed examination of the code
region using exact profiling or less accurate sampling-based profil-
ing.

6 RELATEDWORK

Table 1 summarizes the comparison between Snoopie and the other
communication profilers that work on GPUs. Nsight Systems [48]
and NVTAGS [49] allow programmers to profile multi-GPU com-
munications. Tools like Eztrace [64], Extrae[12], and Score-P[31]
generate traces of host-device and device-device data movements,
however, all of these tools are limited to capture only explicit mem-
ory and the latter three tracing tools support neither NCCL nor
NVSHMEM. ComDetective captures inter-thread communication
but only for multicore CPUs [60]. ComScribe introduced in [8] and
extended in [63], captures P2P host-device, P2P device-device, and
collective communications among multiple GPUs. It only presents
the profiling results in the form of communication matrices.

Diogenes [68] leverages the feed-forward measurement profil-
ing model to identify problematic synchronization and data trans-
fers through multi-stage/multi-run profiling of GPU applications.
However, this tool does not capture inter-GPU remote memory
operations. Li et al. [34] developed Tartan, which is a benchmark
suite that characterizes scale-up and scale-out multi-GPU applica-
tions. Using this benchmark suite, they investigated the latency and
bandwidth of various GPU bottlenecks. Another work by Pearson
et al. [56] introduced Comm|Scope, which is another benchmark
suite that characterizes communications in multi-GPU machines.

Paraver [15] is a visualization tool for parallel programs run-
ning PVM message passing library [20] that translates the trace
files analyzed by DIMEMAS simulator [21] into graphical displays.
VAMPIR [38] is a graphical tool for MPI applications. It converts an
input trace file into various graphical system views, which include
the current activity of each processor, a timeline system view, and
summary statistics of system behavior. PerfExplorer [25] presents
analysis results on parallel applications. It performs data mining on
raw performance data stored in a PerfDMF DBMS [26] and presents
the results in the forms of performance graphs, correlation scatter-
plots, and summary statistics. EXTRAVIS[16] is a tool that visualizes
execution traces in order to aid its users in comprehending the
profiled applications.

HPCToolkit[1] presents its profiling results in a code-centric
way using its graphical user interface, HPCViewer. It visualizes the
source code of the profiled application and displays the number
of events sampled using PMUs from each source code line. Per-
formanceHat [14] is another tool that presents the source code
view of profiled applications in an IDE integration. It augments
the view with monitoring data generated during the production
run of the application and creates a performance model. Kousha
et al. [32] devised a visualization tool that leverages CUPTI [47]
and MPI_T [62] to capture the utilization of GPU interconnects and
correlates it with MPI communication patterns. Schaad et al.[61]
developed a performance visualization tool that reports data move-
ment and reuse behavior of profiled applications by leveraging
static dataflow analysis. In contrast, our visualizer stands apart by
offering fine-grained visualization of GPU communication.

GVPROF [69] and ValueExpert [70] use binary instrumentation
for analyzing value-related inefficiencies in GPU kernels. DrG-
PUM [35] employs binary instrumentation to detect inefficiencies
related to memory usage. While these tools attribute identified inef-
ficiencies to data objects and code lines, it’s important to note that
they are designed for single-GPU applications, unlike Snoopie.

7 CONCLUSION

Our work introduces Snoopie, a profiling tool that monitors and
analyzes multi-GPU communication within a single node. Snoopie
stands out from previous tools by being able to capture communica-
tion triggered by P2P direct accesses and NCCL/NVSHMEM library
calls. To help locate performance bottlenecks and facilitate debug-
ging, Snoopie supports communication attribution to the involved
devices, source code lines, and data objects. The tool presents this
information in a visualizer with support for multiple levels of gran-
ularity. We demonstrated its capabilities through various use cases.
Future work will focus on increasing the tool’s user-friendliness,
adding support for multi-node communication, and applying it to
a wider range of applications.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme under Grant 949587 and in part by the Royal Society-
Newton Advanced Fellowship under Grant NAF\R2\202207.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. 2010. HPCTOOLKIT: Tools for Performance Analysis of Optimized
Parallel Programs Http://Hpctoolkit.Org. Concurr. Comput. : Pract. Exper. 22, 6
(apr 2010), 685–701.

[2] Inc Advanced Micro Devices. 2024. AMD ROCm Documentation. https://rocm.
docs.amd.com/.

[3] Inc AdvancedMicro Devices. 2024. Omnitrace. https://github.com/AMDResearch/
omnitrace.

[4] Inc Advanced Micro Devices. 2024. ROCm RCCL Documentation. https://rocm.
docs.amd.com/projects/rccl/en/latest/.

[5] Inc Advanced Micro Devices. 2024. ROCSHMEM. https://github.com/ROCm-
DeveloperTools/ROC_SHMEM.

[6] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Offloading Communi-
cation Control Logic in GPU Accelerated Applications. In Proceedings of the 17th
IEEE/ACM Int’l Symposium on Cluster, Cloud and Grid Computing (CCGrid’17).
IEEE, New York, NY, USA, 248–257. https://doi.org/10.1109/CCGRID.2017.29

[7] Meta AI. 2024. PyTorch. https://github.com/pytorch/pytorch.

https://rocm.docs.amd.com/
https://rocm.docs.amd.com/
https://github.com/AMDResearch/omnitrace
https://github.com/AMDResearch/omnitrace
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://github.com/ROCm-DeveloperTools/ROC_SHMEM
https://github.com/ROCm-DeveloperTools/ROC_SHMEM
https://doi.org/10.1109/CCGRID.2017.29
https://github.com/pytorch/pytorch

Snoopie: A Multi-GPU Communication Profiler and Visualizer ICS ’24, June 04–07, 2024, Kyoto, Japan

[8] Palwisha Akhtar, Erhan Tezcan, Fareed Mohammad Qararyah, and Didem Unat.
2020. ComScribe: Identifying Intra-Node GPU Communication. In Benchmark-
ing, Measuring, and Optimizing: Third BenchCouncil International Symposium,
Bench’20. Springer-Verlag, Berlin, Heidelberg, 157–174. https://doi.org/10.1007/
978-3-030-71058-3_10

[9] Continuum Analytics. 2024. A Just-In-Time Compiler for Numerical Functions
in Python. https://github.com/numba/numba.

[10] Google Brain. 2024. TensorFlow. https://github.com/tensorflow/tensorflow.
[11] U.V. Catalyurek and C. Aykanat. 1999. Hypergraph-partitioning-based decomposi-

tion for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems 10, 7 (1999), 673–693. https://doi.org/10.1109/71.780863

[12] Barcelona Supercomputing Center. [n. d.]. BSC-Performance-Tools: Extrae. https:
//tools.bsc.es/extrae.

[13] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydın Buluç, Katherine Yelick,
and John D. Owens. 2022. Scalable Irregular Parallelism with GPUs: Getting CPUs
out of the Way. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (Dallas, Texas) (SC ’22). IEEE, New
York, NY, USA, Article 50, 16 pages.

[14] Jürgen Cito, Philipp Leitner, Martin Rinard, and Harald C. Gall. 2019. Interactive
Production Performance Feedback in the IDE. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 971–981. https://doi.org/10.1109/
ICSE.2019.00102

[15] Departament Computadors, Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi
Girona. 1995. PARAVER: A tool to visualize and analyze parallel code. WoTUG-18
44 (03 1995).

[16] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen, Jarke J. van Wijk,
and Arie van Deursen. 2007. Understanding Execution Traces Using Massive
Sequence and Circular Bundle Views. In 15th IEEE International Conference on
Program Comprehension (ICPC ’07). 49–58. https://doi.org/10.1109/ICPC.2007.39

[17] Jack J. Dongarra. 2022. The Evolution of Mathematical Software. Commun. ACM
65, 12 (Nov 2022), 66–72. https://doi.org/10.1145/3554977

[18] Apache Software Foundation. 2024. Apache MXNet for Deep Learning. https:
//github.com/apache/mxnet.

[19] Python Software Foundation. 2024. Python/C API Reference Manual. https:
//docs.python.org/3/c-api/index.html.

[20] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. 1995. Pvm 3 User’s Guide And Reference Manual. (11 1995).

[21] Sergi Girona, Toni Cortes, and Vincent Pillet. 1994. Effect of Short Term Schedul-
ing on Message Passing Multiprogrammed Systems. (11 1994).

[22] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of Persistent
Threads style GPU programming for GPGPU workloads. In 2012 Innovative
Parallel Computing (InPar). Institute for Electrical and Electronics Engineers,
New York, NY, USA, 1–14. https://doi.org/10.1109/InPar.2012.6339596

[23] Khaled Hamidouche and Michael LeBeane. 2020. GPU INitiated OPenSHMEM:
Correct and Efficient Intra-Kernel Networking for DGPUs. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(San Diego, California) (PPoPP ’20). ACM, New York, NY, USA, 336–347. https:
//doi.org/10.1145/3332466.3374544

[24] Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari Subramoni,
Ching-Hsiang Chu, and Dhabaleswar K. Panda. 2015. Exploiting GPUDirect
RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters.
In 2015 IEEE International Conference on Cluster Computing. IEEE, New York, NY,
USA, 78–87. https://doi.org/10.1109/CLUSTER.2015.21

[25] K.A. Huck and A.D. Malony. 2005. PerfExplorer: A Performance Data Mining
Framework For Large-Scale Parallel Computing. In SC ’05: Proceedings of the
2005 ACM/IEEE Conference on Supercomputing. 41–41. https://doi.org/10.1109/
SC.2005.55

[26] K.A. Huck, A.D. Malony, R. Bell, and A. Morris. 2005. Design and implementation
of a parallel performance data management framework. In 2005 International
Conference on Parallel Processing (ICPP’05). 473–482. https://doi.org/10.1109/
ICPP.2005.29

[27] Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib, and Didem
Unat. 2023. Multi-GPU Communication Schemes for Iterative Solvers: When
CPUs Are Not in Charge. In Proceedings of the 37th International Conference on
Supercomputing (Orlando, FL, USA) (ICS ’23). ACM, New York, NY, USA, 192–202.
https://doi.org/10.1145/3577193.3593713

[28] Mohammad Kefah Taha Issa, Didem Unat, Dogan Sagbili, Muhammad Aditya
Sasongko, Ilyas Turimbetov, and Javid Baydamirli. 2024. Snoopie Figures. https:
//doi.org/10.6084/m9.figshare.c.7190766.v1

[29] Wenzel Jakob. 2024. pybind11 — Seamless operability between C++11 and Python.
https://github.com/pybind/pybind11.

[30] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20, 1 (1998), 359–392. https://doi.org/10.1137/S1064827595287997

[31] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and

Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and
Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

[32] Pouya Kousha, Bharath Ramesh, Kaushik Kandadi Suresh, Ching-Hsiang Chu,
Arpan Jain, Nick Sarkauskas, Hari Subramoni, and Dhabaleswar K. Panda. 2019.
Designing a Profiling and Visualization Tool for Scalable and In-depth Analysis
of High-Performance GPU Clusters. In 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC). 93–102. https:
//doi.org/10.1109/HiPC.2019.00022

[33] Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Breternitz,
Steven K. Reinhardt, and Lizy K. John. 2017. GPU Triggered Networking for
Intra-Kernel Communications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’17). ACM, New York, NY, USA, Article 22, 12 pages. https:
//doi.org/10.1145/3126908.3126950

[34] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan Tallent, and Kevin
Barker. 2018. Tartan: Evaluating Modern GPU Interconnect via a Multi-GPU
Benchmark Suite. In 2018 IEEE International Symposium on Workload Characteri-
zation (IISWC). 191–202. https://doi.org/10.1109/IISWC.2018.8573483

[35] Mao Lin, Keren Zhou, and Pengfei Su. 2023. DrGPUM: Guiding Memory Op-
timization for GPU-Accelerated Applications. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). ACM, New
York, NY, USA, 164–178. https://doi.org/10.1145/3582016.3582044

[36] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Simon J. Penny-
cook, Kristyn Maschhoff, Jason Sewall, Nalini Kumar, Shirley Ho, Michael F.
Ringenburg, Prabhat, and Victor Lee. 2019. CosmoFlow: using deep learning to
learn the universe at scale. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC
’18). IEEE Press, Article 65, 11 pages. https://doi.org/10.1109/SC.2018.00068

[37] John McCalpin. 2016. STREAM: Sustainable Memory Bandwidth in High Perfor-
mance Computers. HPCWire https://www.hpcwire.com/2016/11/07/mccalpin-
traces-hpc-system-balance-trends.

[38] Wolfgang Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and
Karl Solchenbach. 1996. VAMPIR: Visualization and analysis of mpi resources.
Supercomputer 12 (05 1996).

[39] Greg Nakhimovsky. 2001. Debugging and Performance Tuning with Library
Interposers. http://dsc.sun.com/solaris/articles/lib_interposers.html.

[40] NVIDIA. 2022. Compute Sanitizer. https://docs.nvidia.com/cuda/compute-
sanitizer/

[41] NVIDIA. 2022. Multi GPU Programming Models NVSHMEM. https://github.
com/NVIDIA/multi-gpu-programming-models/tree/master/nvshmem_opt.

[42] NVIDIA. 2022. Multi GPU Programming Models P2P. https://github.com/
NVIDIA/multi-gpu-programming-models/tree/master/multi_threaded_p2p.

[43] NVIDIA. 2022. NCCL Tests. https://github.com/NVIDIA/nccl-tests.
[44] NVIDIA. 2022. Nvidia OpenSHMEM Library (NVSHMEM) documentation. https:

//docs.nvidia.com/nvshmem/api/
[45] NVIDIA. 2023. CUDA Binary Utilities. https://docs.nvidia.com/cuda/cuda-binary-

utilities/index.html.
[46] NVIDIA. 2023. CUPTI. https://docs.nvidia.com/cupti/
[47] NVIDIA. 2023. NVIDIA CUDA Profiling Tools Interface (CUPTI) - CUDA Toolkit.

https://developer.nvidia.com/cupti
[48] NVIDIA. 2023. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-

systems.
[49] NVIDIA. 2023. NVTAGS. https://developer.nvidia.com/nvidia-nvtags.
[50] NVIDIA. 2023. NVTX. https://docs.nvidia.com/nvtx/.
[51] NVIDIA. 2023. Parallel Thread Execution ISA Version 8.2. https://docs.nvidia.

com/cuda/parallel-thread-execution/
[52] NVIDIA. 2023. Parallel Thread Execution ISA Version 8.2. https://docs.nvidia.

com/cuda/parallel-thread-execution/
[53] Nvidia. 2024. NCCL. https://github.com/NVIDIA/nccl.
[54] Lena Oden and Holger Fröning. 2013. GGAS: Global GPU address spaces for

efficient communication in heterogeneous clusters. In 2013 IEEE Int’l Conference
on Cluster Computing (CLUSTER). IEEE, Indianapolis, IN, USA, 1–8. https:
//doi.org/10.1109/CLUSTER.2013.6702638

[55] Marc S. Orr, Shuai Che, Bradford M. Beckmann, Mark Oskin, Steven K. Reinhardt,
and David A. Wood. 2017. Gravel: Fine-Grain GPU-Initiated Network Messages.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado, USA) (SC ’17). Association
for Computing Machinery, New York, NY, USA, Article 23, 12 pages. https:
//doi.org/10.1145/3126908.3126914

[56] Carl Pearson, Abdul Dakkak, Sarah Hashash, Cheng Li, I-Hsin Chung, Jinjun
Xiong, and Wen-Mei Hwu. 2019. Evaluating Characteristics of CUDA Communi-
cation Primitives on High-Bandwidth Interconnects. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering (Mumbai, India)
(ICPE ’19). ACM, New York, NY, USA, 209–218. https://doi.org/10.1145/3297663.

https://doi.org/10.1007/978-3-030-71058-3_10
https://doi.org/10.1007/978-3-030-71058-3_10
https://github.com/numba/numba
https://github.com/tensorflow/tensorflow
https://doi.org/10.1109/71.780863
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
https://doi.org/10.1109/ICSE.2019.00102
https://doi.org/10.1109/ICSE.2019.00102
https://doi.org/10.1109/ICPC.2007.39
https://doi.org/10.1145/3554977
https://github.com/apache/mxnet
https://github.com/apache/mxnet
https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/c-api/index.html
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/3332466.3374544
https://doi.org/10.1145/3332466.3374544
https://doi.org/10.1109/CLUSTER.2015.21
https://doi.org/10.1109/SC.2005.55
https://doi.org/10.1109/SC.2005.55
https://doi.org/10.1109/ICPP.2005.29
https://doi.org/10.1109/ICPP.2005.29
https://doi.org/10.1145/3577193.3593713
https://doi.org/10.6084/m9.figshare.c.7190766.v1
https://doi.org/10.6084/m9.figshare.c.7190766.v1
https://github.com/pybind/pybind11
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/HiPC.2019.00022
https://doi.org/10.1109/HiPC.2019.00022
https://doi.org/10.1145/3126908.3126950
https://doi.org/10.1145/3126908.3126950
https://doi.org/10.1109/IISWC.2018.8573483
https://doi.org/10.1145/3582016.3582044
https://doi.org/10.1109/SC.2018.00068
https://www.hpcwire.com/2016/11/07/mccalpin-traces-hpc-system-balance-trends
https://www.hpcwire.com/2016/11/07/mccalpin-traces-hpc-system-balance-trends
http://dsc.sun.com/solaris/articles/lib_interposers.html
https://docs.nvidia.com/cuda/compute-sanitizer/
https://docs.nvidia.com/cuda/compute-sanitizer/
https://github.com/NVIDIA/multi-gpu-programming-models/tree/master/nvshmem_opt
https://github.com/NVIDIA/multi-gpu-programming-models/tree/master/nvshmem_opt
https://github.com/NVIDIA/multi-gpu-programming-models/tree/master/multi_threaded_p2p
https://github.com/NVIDIA/multi-gpu-programming-models/tree/master/multi_threaded_p2p
https://github.com/NVIDIA/nccl-tests
https://docs.nvidia.com/nvshmem/api/
https://docs.nvidia.com/nvshmem/api/
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cupti/
https://developer.nvidia.com/cupti
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nvidia-nvtags
https://docs.nvidia.com/nvtx/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://github.com/NVIDIA/nccl
https://doi.org/10.1109/CLUSTER.2013.6702638
https://doi.org/10.1109/CLUSTER.2013.6702638
https://doi.org/10.1145/3126908.3126914
https://doi.org/10.1145/3126908.3126914
https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1145/3297663.3310299

ICS ’24, June 04–07, 2024, Kyoto, Japan Issa et al.

3310299
[57] Stephen W. Poole, Oscar Hernandez, Jeffery A. Kuehn, Galen M. Shipman, An-

thony Curtis, and Karl Feind. 2011. OpenSHMEM - Toward a Unified RMA Model.
Springer US, Boston, MA, 1379–1391. https://doi.org/10.1007/978-0-387-09766-
4_490

[58] Sreeram Potluri, Anshuman Goswami, Davide Rossetti, C.J. Newburn, Manju-
nath Gorentla Venkata, and Neena Imam. 2017. GPU-Centric Communication
on NVIDIA GPU Clusters with InfiniBand: A Case Study with OpenSHMEM. In
2017 IEEE 24th International Conference on High Performance Computing (HiPC).
IEEE, New York, NY, USA, 253–262. https://doi.org/10.1109/HiPC.2017.00037

[59] Microsoft Research. 2024. deepspeed. https://github.com/microsoft/DeepSpeed.
[60] Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat.

2019. ComDetective: a lightweight communication detection tool for threads.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’19). ACM, New York,
NY, USA, Article 18, 21 pages. https://doi.org/10.1145/3295500.3356214

[61] Philipp Schaad, Tal Ben-Nun, and Torsten Hoefler. 2022. Boosting Performance
Optimization with Interactive Data Movement Visualization. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 64, 16 pages.

[62] Martin Schulz. [n. d.]. MPIT: A New Interface for Performance Tools in MPI 3.
http://cscads.rice.edu/2010-08-cscads-mpit.pdf

[63] Muhammet Abdullah Soytürk, Palwisha Akhtar, Erhan Tezcan, and Didem Unat.
2022. Monitoring Collective Communication Among GPUs. In Euro-Par 2021:
Parallel Processing Workshops, Ricardo Chaves, Dora B. Heras, Aleksandar Ilic,
Didem Unat, Rosa M. Badia, Andrea Bracciali, Patrick Diehl, Anshu Dubey,
Oh Sangyoon, Stephen L. Scott, and Laura Ricci (Eds.). Springer International
Publishing, Cham, 41–52.

[64] François Trahay, François Rue, Mathieu Faverge, Yutaka Ishikawa, Raymond
Namyst, and Jack Dongarra. 2011. EZTrace: A Generic Framework for Perfor-
mance Analysis. In 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. 618–619. https://doi.org/10.1109/CCGrid.2011.83

[65] James D. Trotter, Sinan Ekmekçibaşı, Johannes Langguth, Tugba Torun, Emre
Düzakın, Aleksandar Ilic, and Didem Unat. 2023. Bringing Order to Sparsity:
A Sparse Matrix Reordering Study on Multicore CPUs. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (Denver, CO) (SC’23). ACM, New York, NY, USA, Article 31, 13 pages.
https://doi.org/10.1145/3581784.3607046

[66] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro
Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel,
Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul
H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and
Miquel Pericás. 2017. Trends in Data Locality Abstractions for HPC Systems.
IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017), 3007–3020.
https://doi.org/10.1109/TPDS.2017.2703149

[67] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keckler. 2019.
NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (Columbus, OH, USA) (MICRO ’52). ACM, New York, NY, USA, 372–383.
https://doi.org/10.1145/3352460.3358307

[68] Benjamin Welton and Barton P. Miller. 2019. Diogenes: Looking for an Honest
CPU/GPU Performance Measurement Tool. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). ACM, New York, NY, USA, Article 21, 20 pages.
https://doi.org/10.1145/3295500.3356213

[69] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.
2020. GVPROF: A Value Profiler for GPU-Based Clusters. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–16. https://doi.org/10.1109/SC41405.2020.00093

[70] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.
2022. ValueExpert: exploring value patterns in GPU-accelerated applications. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’22). ACM, New York, NY, USA, 171–185. https://doi.org/10.1145/3503222.3507708

https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1007/978-0-387-09766-4_490
https://doi.org/10.1007/978-0-387-09766-4_490
https://doi.org/10.1109/HiPC.2017.00037
https://github.com/microsoft/DeepSpeed
https://doi.org/10.1145/3295500.3356214
http://cscads.rice.edu/2010-08-cscads-mpit.pdf
https://doi.org/10.1109/CCGrid.2011.83
https://doi.org/10.1145/3581784.3607046
https://doi.org/10.1109/TPDS.2017.2703149
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1145/3295500.3356213
https://doi.org/10.1109/SC41405.2020.00093
https://doi.org/10.1145/3503222.3507708

	Abstract
	1 Introduction
	2 Motivation: Identifying Gaps
	3 Snoopie with Multi-View Visualizer
	4 Implementation of Snoopie
	4.1 Capturing P2P Communication
	4.2 Device Attribution
	4.3 NCCL and NVSHMEM Support
	4.4 Source Code Line Attribution
	4.5 Data Object Attribution
	4.6 Support for Profiling Python Programs
	4.7 Reducing Profiling Overhead
	4.8 Discussions on Limitations

	5 Evaluation
	5.1 Breath-First Search (BFS)
	5.2 2D Stencil Computation
	5.3 AllReduce from NCCL
	5.4 CosmoFlow
	5.5 Overhead and Accuracy

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

